Brewer John, Kulkarni Sachin, Raman Aaswath P
Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States of America.
Nano Lett. 2023 Oct 11;23(19):8940-8946. doi: 10.1021/acs.nanolett.3c02375. Epub 2023 Sep 21.
A fundamental capability needed for any transmissive optical component is anti-reflection, yet this capability can be challenging to achieve in a cost-effective manner over longer infrared wavelengths. We demonstrate that Mie-resonant photonic structures can enable high transmission through a high-index optical component, allowing it to function effectively over long-wavelength infrared wavelengths. Using silicon as a model system, we demonstrate a resonant metasurface that enables a window optic with transmission up to 40% greater than that of unpatterned Si. Imaging comparisons with unpatterned Si and off-the-shelf germanium optics are shown as well as modulation transfer function measurements, showing excellent performance and suitability for imaging applications. Our results show how resonant photonic structures can be used to improve optical transmission through high-index optical components and highlight their possible use in infrared imaging applications.
任何透射光学元件都需要具备的一项基本能力是抗反射,然而,要在更长的红外波长范围内以具有成本效益的方式实现这一能力可能具有挑战性。我们证明,米氏共振光子结构能够实现通过高折射率光学元件的高透射率,使其能够在长波长红外波段有效发挥作用。以硅作为模型系统,我们展示了一种共振超表面,该超表面能够使窗口光学元件的透射率比未图案化的硅高出40%。文中展示了与未图案化硅和现成锗光学元件的成像比较以及调制传递函数测量结果,显示出其优异的性能和在成像应用中的适用性。我们的结果表明了共振光子结构可如何用于提高通过高折射率光学元件的光透射率,并突出了它们在红外成像应用中的潜在用途。