Suppr超能文献

血清 SERS 技术联合深度学习算法在免疫性疾病和慢性肾脏病快速诊断中的应用。

Application of serum SERS technology combined with deep learning algorithm in the rapid diagnosis of immune diseases and chronic kidney disease.

机构信息

College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China.

Department of Rheumatology and Immunology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China.

出版信息

Sci Rep. 2023 Sep 21;13(1):15719. doi: 10.1038/s41598-023-42719-5.

Abstract

Surface-enhanced Raman spectroscopy (SERS), as a rapid, non-invasive and reliable spectroscopic detection technique, has promising applications in disease screening and diagnosis. In this paper, an annealed silver nanoparticles/porous silicon Bragg reflector (AgNPs/PSB) composite SERS substrate with high sensitivity and strong stability was prepared by immersion plating and heat treatment using porous silicon Bragg reflector (PSB) as the substrate. The substrate combines the five deep learning algorithms of the improved AlexNet, ResNet, SqueezeNet, temporal convolutional network (TCN) and multiscale fusion convolutional neural network (MCNN). We constructed rapid screening models for patients with primary Sjögren's syndrome (pSS) and healthy controls (HC), diabetic nephropathy patients (DN) and healthy controls (HC), respectively. The results showed that the annealed AgNPs/PSB composite SERS substrates performed well in diagnosing. Among them, the MCNN model had the best classification effect in the two groups of experiments, with an accuracy rate of 94.7% and 92.0%, respectively. Previous studies have indicated that the AgNPs/PSB composite SERS substrate, combined with machine learning algorithms, has achieved promising classification results in disease diagnosis. This study shows that SERS technology based on annealed AgNPs/PSB composite substrate combined with deep learning algorithm has a greater developmental prospect and research value in the early identification and screening of immune diseases and chronic kidney disease, providing reference ideas for non-invasive and rapid clinical medical diagnosis of patients.

摘要

表面增强拉曼光谱(SERS)作为一种快速、非侵入性和可靠的光谱检测技术,在疾病筛查和诊断方面具有广阔的应用前景。本文以多孔硅布拉格反射镜(PSB)为基底,采用浸镀和热处理的方法制备了退火银纳米粒子/多孔硅布拉格反射镜(AgNPs/PSB)复合 SERS 基底,该基底具有高灵敏度和强稳定性。该基底结合了改进型 AlexNet、ResNet、SqueezeNet、时间卷积网络(TCN)和多尺度融合卷积神经网络(MCNN)五种深度学习算法。我们分别为原发性干燥综合征(pSS)患者和健康对照者(HC)、糖尿病肾病(DN)患者和健康对照者(HC)构建了快速筛选模型。结果表明,退火 AgNPs/PSB 复合 SERS 基底在诊断中表现良好。其中,MCNN 模型在两组实验中的分类效果最佳,准确率分别为 94.7%和 92.0%。既往研究表明,AgNPs/PSB 复合 SERS 基底结合机器学习算法在疾病诊断中取得了有前景的分类结果。本研究表明,基于退火 AgNPs/PSB 复合基底的 SERS 技术与深度学习算法相结合,在免疫性疾病和慢性肾病的早期识别和筛选方面具有更大的发展前景和研究价值,为患者的非侵入性和快速临床医疗诊断提供了参考思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0da/10514316/487690e17c0f/41598_2023_42719_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验