Suppr超能文献

基于热退火银纳米颗粒复合基底的血清 SERS 技术在乳腺癌中的应用。

Application of serum SERS technology based on thermally annealed silver nanoparticle composite substrate in breast cancer.

机构信息

College of Software, Xinjiang University, Urumqi 830046, China.

Guangzhou Panyu Polytechnic, No. 1342 Shiliang Road, Panyu, Guangzhou, Guangdong 511483, China.

出版信息

Photodiagnosis Photodyn Ther. 2023 Mar;41:103284. doi: 10.1016/j.pdpdt.2023.103284. Epub 2023 Jan 13.

Abstract

Liquid biopsy is currently a non-destructive and convenient method of cancer screening, due to human blood containing a variety of cancer-related biomolecules. Therefore, the development of an accurate and rapid breast cancer screening technique combined with breast cancer serum is crucial for the treatment and prognosis of breast cancer patients. In this study, the surface enhanced Raman spectroscopy (SERS) technique is used to enhance the Raman spectroscopy (RS) signal of serum based on a high sensitivity thermally annealed silver nanoparticle/porous silicon bragg mirror (AgNPs/PSB) composite substrate. Compared with RS, SERS reflects more and stronger spectral peak information, which is beneficial to discover new biomarkers of breast cancer. At the same time, to further explore the diagnostic ability of SERS technology for breast cancer. In this study, the raw spectral data are processed by baseline correction, polynomial smoothing, and normalization. Then, the relevant feature information of SERS and RS is extracted by principal component analysis (PCA), and five classification models are established to compare the diagnostic performance of SERS and RS models respectively. The experimental results show that the breast cancer diagnosis model based on the improved SERS substrate combined with the machine learning algorithm can be used to distinguish breast cancer patients from controls. The accuracy, sensitivity, specificity and AUC values of the SVM model are 100%, 100%, 100% and 100%, respectively, as well as the training time of 4 ms. The above experimental results show that the SERS technology based on AgNPs/PSB composite substrate, combined with machine learning methods, has great potential in the rapid and accurate identification of breast cancer patients.

摘要

液体活检是一种非侵入性且便捷的癌症筛查方法,因为人类血液中含有多种与癌症相关的生物分子。因此,开发一种准确、快速的乳腺癌筛查技术,并结合乳腺癌血清,对于乳腺癌患者的治疗和预后至关重要。在本研究中,我们使用表面增强拉曼光谱(SERS)技术,基于高灵敏度热退火银纳米粒子/多孔硅布拉格镜(AgNPs/PSB)复合衬底,增强血清的拉曼光谱(RS)信号。与 RS 相比,SERS 反射出更多、更强的光谱峰信息,这有利于发现乳腺癌的新生物标志物。同时,为了进一步探索 SERS 技术对乳腺癌的诊断能力。在本研究中,通过基线校正、多项式平滑和归一化对原始光谱数据进行处理。然后,通过主成分分析(PCA)提取 SERS 和 RS 的相关特征信息,并分别建立五个分类模型,比较 SERS 和 RS 模型的诊断性能。实验结果表明,基于改进的 SERS 衬底结合机器学习算法的乳腺癌诊断模型可用于区分乳腺癌患者和对照组。SVM 模型的准确率、灵敏度、特异度和 AUC 值分别为 100%、100%、100%和 100%,训练时间为 4ms。上述实验结果表明,基于 AgNPs/PSB 复合衬底的 SERS 技术结合机器学习方法,在快速准确识别乳腺癌患者方面具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验