文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 SEER 数据库的直肠癌患者竞争风险模型的建立与验证。

Development and validation of a competitive risk model in patients with rectal cancer: based on SEER database.

机构信息

Department of Gastroenterology and Hepatology, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Zhengzhou, 450003, Henan, China.

Department of Infection Disease, Shanghai Jinshan District Tinglin Hospital, Shanghai, 201505, China.

出版信息

Eur J Med Res. 2023 Sep 21;28(1):362. doi: 10.1186/s40001-023-01357-3.


DOI:10.1186/s40001-023-01357-3
PMID:37735712
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10515244/
Abstract

BACKGROUND: Rectal cancer is one of the most common malignancies. To predict the specific mortality risk of rectal cancer patients, we constructed a predictive nomogram based on a competing risk model. METHODS: The information on rectal cancer patients was extracted from the SEER database. Traditional survival analysis and specific death analysis were performed separately on the data. RESULTS: The present study included 23,680 patients, with 16,580 in the training set and 7100 in the validation set. The specific mortality rate calculated by the competing risk model was lower than that of the traditional survival analysis. Age, Marriage, Race, Sex, ICD-O-3Hist/Behav, Grade, AJCC stage, T stage, N stage, Surgery, Examined LN, RX SUMM-SURG OTH, Chemotherapy, CEA, Deposits, Regional nodes positive, Brain, Bone, Liver, Lung, Tumor size, and Malignant were independent influencing factors of specific death. The overall C statistic of the model in the training set was 0.821 (Se = 0.001), and the areas under the ROC curve for cancer-specific survival (CSS) at 1, 3, and 5 years were 0.842, 0.830, and 0.812, respectively. The overall C statistic of the model in the validation set was 0.829 (Se = 0.002), and the areas under the ROC curve for CSS at 1, 3, and 5 years were 0.851, 0.836, and 0.813, respectively. CONCLUSIONS: The predictive nomogram based on a competing risk model for time-specific mortality in patients with rectal cancer has very desirable accuracy. Thus, the application of the predictive nomogram in clinical practice can help physicians make clinical decisions and follow-up strategies.

摘要

背景:直肠癌是最常见的恶性肿瘤之一。为了预测直肠癌患者的特定死亡率风险,我们基于竞争风险模型构建了一个预测列线图。

方法:从 SEER 数据库中提取直肠癌患者的信息。对数据分别进行传统生存分析和特定死亡分析。

结果:本研究共纳入 23680 例患者,其中训练集 16580 例,验证集 7100 例。竞争风险模型计算的特定死亡率低于传统生存分析。年龄、婚姻状况、种族、性别、ICD-O-3Hist/Behav、分级、AJCC 分期、T 分期、N 分期、手术、检查的淋巴结、RX SUMM-SURG OTH、化疗、CEA、沉积、局部淋巴结阳性、脑、骨、肝、肺、肿瘤大小和恶性是特定死亡的独立影响因素。模型在训练集中的总体 C 统计量为 0.821(Se=0.001),1、3 和 5 年癌症特异性生存率(CSS)的 ROC 曲线下面积分别为 0.842、0.830 和 0.812。模型在验证集中的总体 C 统计量为 0.829(Se=0.002),1、3 和 5 年 CSS 的 ROC 曲线下面积分别为 0.851、0.836 和 0.813。

结论:基于竞争风险模型的直肠癌患者时间特异性死亡率预测列线图具有很好的准确性。因此,预测列线图在临床实践中的应用可以帮助医生做出临床决策和随访策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/738f/10515244/25c7383a8cc8/40001_2023_1357_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/738f/10515244/1e23f11cafae/40001_2023_1357_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/738f/10515244/c5c1a5d9ac12/40001_2023_1357_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/738f/10515244/25c7383a8cc8/40001_2023_1357_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/738f/10515244/1e23f11cafae/40001_2023_1357_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/738f/10515244/c5c1a5d9ac12/40001_2023_1357_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/738f/10515244/25c7383a8cc8/40001_2023_1357_Fig3_HTML.jpg

相似文献

[1]
Development and validation of a competitive risk model in patients with rectal cancer: based on SEER database.

Eur J Med Res. 2023-9-21

[2]
The nomograms for predicting overall and cancer-specific survival in elderly patients with early-stage lung cancer: A population-based study using SEER database.

Front Public Health. 2022

[3]
A Web-Based Prediction Model for Cancer-Specific Survival of Elderly Patients With Hypopharyngeal Squamous Cell Carcinomas: A Population-Based Study.

Front Public Health. 2021

[4]
A nomogram to predict the prognosis of patients with unresected rectal adenocarcinoma undergoing chemoradiotherapy: a population-based study.

J Cancer. 2021-6-11

[5]
A nomogram for predicting cause-specific mortality among patients with cecal carcinoma: a study based on SEER database.

BMC Gastroenterol. 2023-5-23

[6]
Nomogram to predict cause-specific mortality of patients with rectal adenocarcinoma undergoing surgery: a competing risk analysis.

BMC Gastroenterol. 2022-2-10

[7]
Nomogram predicting overall survival of rectal squamous cell carcinomas patients based on the SEER database: A population-based STROBE cohort study.

Medicine (Baltimore). 2019-11

[8]
Nomogram for the prediction of lymph node metastasis and survival outcomes in rectal neuroendocrine tumour patients undergoing resection.

J Gastrointest Oncol. 2022-2

[9]
A Web-Based Prediction Model for Cancer-Specific Survival of Elderly Patients Undergoing Surgery With Prostate Cancer: A Population-Based Study.

Front Public Health. 2022

[10]
A prognostic nomogram for stage II/III rectal cancer patients treated with neoadjuvant chemoradiotherapy followed by surgical resection.

BMC Surg. 2022-7-4

本文引用的文献

[1]
Artificial Intelligence in the Advanced Diagnosis of Bladder Cancer-Comprehensive Literature Review and Future Advancement.

Diagnostics (Basel). 2023-7-7

[2]
Total neoadjuvant therapy versus chemoradiotherapy for locally advanced rectal cancer: Bayesian network meta-analysis.

Br J Surg. 2023-6-12

[3]
Artificial intelligence and radiomics in evaluation of kidney lesions: a comprehensive literature review.

Ther Adv Urol. 2023-4-17

[4]
Radiomics Approaches for the Prediction of Pathological Complete Response after Neoadjuvant Treatment in Locally Advanced Rectal Cancer: Ready for Prime Time?

Cancers (Basel). 2023-1-9

[5]
Cancer statistics, 2023.

CA Cancer J Clin. 2023-1

[6]
Comparison of Survival Among Adults With Rectal Cancer Who Have Undergone Laparoscopic vs Open Surgery: A Meta-analysis.

JAMA Netw Open. 2022-5-2

[7]
Current controversies in TNM for the radiological staging of rectal cancer and how to deal with them: results of a global online survey and multidisciplinary expert consensus.

Eur Radiol. 2022-7

[8]
Deep-learning model for predicting the survival of rectal adenocarcinoma patients based on a surveillance, epidemiology, and end results analysis.

BMC Cancer. 2022-2-25

[9]
Predictive and Prognostic Effects of Primary Tumor Size on Colorectal Cancer Survival.

Front Oncol. 2021-12-9

[10]
A comprehensive overview of tumour deposits in colorectal cancer: Towards a next TNM classification.

Cancer Treat Rev. 2022-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索