State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
Mol Plant. 2023 Oct 2;16(10):1678-1694. doi: 10.1016/j.molp.2023.09.007. Epub 2023 Sep 20.
Root developmental plasticity is crucial for plants to adapt to a changing soil environment, where nutrients and abiotic stress factors are distributed heterogeneously. How plant roots sense and avoid heterogeneous abiotic stress in soil remains unclear. Here, we show that, in response to asymmetric stress of heavy metals (cadmium, copper, or lead) and salt, rice roots rapidly proliferate lateral roots (LRs) in the stress-free area, thereby remodeling root architecture to avoid localized stress. Imaging and quantitative analyses of reactive oxygen species (ROS) showed that asymmetric stress induces a ROS burst in the tips of the exposed roots and simultaneously triggers rapid systemic ROS signaling to the unexposed roots. Addition of a ROS scavenger to either the stressed or stress-free area abolished systemic ROS signaling and LR proliferation induced by asymmetric stress. Asymmetric stress also enhanced cytosolic calcium (Ca) signaling; blocking Casignaling inhibited systemic ROS propagation and LR branching in the stress-free area. We identified two plasma-membrane-localized respiratory burst oxidase homologs, OsRBOHA and OsRBOHI, as key players in systemic ROS signaling under asymmetric stress. Expression of OsRBOHA and OsRBOHI in roots was upregulated by Cd stress, and knockout of either gene reduced systemic ROS signaling and LR proliferation under asymmetric stress. Furthermore, we demonstrated that auxin signaling and cell wall remodeling act downstream of the systemic ROS signaling to promote LR development. Collectively, our study reveals an RBOH-ROS-auxin signaling cascade that enables rice roots to avoid localized stress of heavy metals and salt and provides new insight into root system plasticity in heterogenous soil.
根系发育可塑性对于植物适应不断变化的土壤环境至关重要,因为养分和非生物胁迫因素在土壤中呈不均匀分布。然而,植物根系如何感知和避免土壤中非生物胁迫的不均匀分布仍然不清楚。在这里,我们发现,水稻根系会对重金属(镉、铜或铅)和盐分的不对称胁迫做出快速反应,即在无胁迫区域大量产生侧根(LRs),从而重塑根系结构以避免局部胁迫。对活性氧(ROS)的成像和定量分析表明,不对称胁迫会在暴露根的尖端诱导 ROS 爆发,并同时引发快速的系统性 ROS 信号传递到未暴露的根。在受胁迫或无胁迫区域添加 ROS 清除剂会消除不对称胁迫诱导的系统性 ROS 信号和 LR 增殖。不对称胁迫还增强了细胞质钙离子(Ca)信号;阻断 Casignaling 会抑制无胁迫区域的系统性 ROS 传播和 LR 分支。我们鉴定了两个定位于质膜的呼吸爆发氧化酶同源物 OsRBOHA 和 OsRBOHI,它们是不对称胁迫下系统性 ROS 信号的关键调控因子。OsRBOHA 和 OsRBOHI 在根系中的表达受 Cd 胁迫上调,并且这两个基因的敲除均会降低不对称胁迫下的系统性 ROS 信号和 LR 增殖。此外,我们还证明了生长素信号和细胞壁重塑在系统性 ROS 信号下游作用,以促进 LR 发育。综上所述,我们的研究揭示了一个 RBOH-ROS-生长素信号级联,使水稻根系能够避免重金属和盐分的局部胁迫,并为不均匀土壤中根系可塑性提供了新的见解。