Department of Computer Science, The Ohio State University, 281 W Lane Ave, Columbus, OH, 43210, USA.
Steve and Cindy Rasmussen Institute for Genomics, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
NPJ Syst Biol Appl. 2023 Sep 22;9(1):46. doi: 10.1038/s41540-023-00299-0.
Mechanistic models are commonly employed to describe signaling and gene regulatory kinetics in single cells and cell populations. Recent advances in single-cell technologies have produced multidimensional datasets where snapshots of copy numbers (or abundances) of a large number of proteins and mRNA are measured across time in single cells. The availability of such datasets presents an attractive scenario where mechanistic models are validated against experiments, and estimated model parameters enable quantitative predictions of signaling or gene regulatory kinetics. To empower the systems biology community to easily estimate parameters accurately from multidimensional single-cell data, we have merged a widely used rule-based modeling software package BioNetGen, which provides a user-friendly way to code for mechanistic models describing biochemical reactions, and the recently introduced CyGMM, that uses cell-to-cell differences to improve parameter estimation for such networks, into a single software package: BioNetGMMFit. BioNetGMMFit provides parameter estimates of the model, supplied by the user in the BioNetGen markup language (BNGL), which yield the best fit for the observed single-cell, time-stamped data of cellular components. Furthermore, for more precise estimates, our software generates confidence intervals around each model parameter. BioNetGMMFit is capable of fitting datasets of increasing cell population sizes for any mechanistic model specified in the BioNetGen markup language. By streamlining the process of developing mechanistic models for large single-cell datasets, BioNetGMMFit provides an easily-accessible modeling framework designed for scale and the broader biochemical signaling community.
机制模型常用于描述单细胞和细胞群体中的信号转导和基因调控动力学。单细胞技术的最新进展产生了多维数据集,其中在单细胞中跨时间测量了大量蛋白质和 mRNA 的拷贝数(或丰度)的快照。这种数据集的可用性提供了一个有吸引力的场景,其中机制模型可以针对实验进行验证,并且估计的模型参数可以对信号转导或基因调控动力学进行定量预测。为了使系统生物学社区能够轻松地从多维单细胞数据中准确估计参数,我们将广泛使用的基于规则的建模软件包 BioNetGen 合并在一起,该软件包提供了一种用户友好的方式来编写描述生化反应的机制模型代码,以及最近引入的 CyGMM,它利用细胞间差异来改善此类网络的参数估计,到一个单一的软件包中:BioNetGMMFit。BioNetGMMFit 提供了用户在 BioNetGen 标记语言(BNGL)中提供的模型参数估计值,这些估计值最适合观察到的单细胞、时间戳数据的细胞成分。此外,为了更精确的估计,我们的软件为每个模型参数生成置信区间。BioNetGMMFit 能够为任何在 BioNetGen 标记语言中指定的机制模型拟合越来越大的细胞群体大小的数据集。通过简化针对大型单细胞数据集开发机制模型的过程,BioNetGMMFit 提供了一个易于访问的建模框架,旨在适应规模和更广泛的生化信号社区。