Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico; Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
Mitochondrion. 2023 Nov;73:30-50. doi: 10.1016/j.mito.2023.09.004. Epub 2023 Sep 20.
Allotopic expression is the functional transfer of an organellar gene to the nucleus, followed by synthesis of the gene product in the cytosol and import into the appropriate organellar sub compartment. Here, we focus on mitochondrial genes encoding OXPHOS subunits that were naturally transferred to the nucleus, and critically review experimental evidence that claim their allotopic expression. We emphasize aspects that may have been overlooked before, i.e., when modifying a mitochondrial gene for allotopic expression━besides adapting the codon usage and including sequences encoding mitochondrial targeting signals━three additional constraints should be considered: (i) the average apparent free energy of membrane insertion (μΔG) of the transmembrane stretches (TMS) in proteins earmarked for the inner mitochondrial membrane, (ii) the final, functional topology attained by each membrane-bound OXPHOS subunit; and (iii) the defined mechanism by which the protein translocator TIM23 sorts cytosol-synthesized precursors. The mechanistic constraints imposed by TIM23 dictate the operation of two pathways through which alpha-helices in TMS are sorted, that eventually determine the final topology of membrane proteins. We used the biological hydrophobicity scale to assign an average apparent free energy of membrane insertion (μΔG) and a "traffic light" color code to all TMS of OXPHOS membrane proteins, thereby predicting which are more likely to be internalized into mitochondria if allotopically produced. We propose that the design of proteins for allotopic expression must make allowance for μΔG maximization of highly hydrophobic TMS in polypeptides whose corresponding genes have not been transferred to the nucleus in some organisms.
异位表达是将细胞器基因功能性转移到核内,随后在细胞质中合成基因产物并导入到适当的细胞器亚区室。在这里,我们重点关注天然转移到核内的编码 OXPHOS 亚基的线粒体基因,并批判性地回顾了声称其异位表达的实验证据。我们强调了以前可能被忽视的方面,即在修饰用于异位表达的线粒体基因时——除了适应密码子使用并包括编码线粒体靶向信号的序列之外——还应考虑三个额外的限制因素:(i) 标记用于线粒体内部膜的跨膜延伸(TMS)的蛋白质的平均表观膜插入自由能(μΔG),(ii) 每个膜结合 OXPHOS 亚基获得的最终功能拓扑结构;和 (iii) 蛋白质转运 TIM23 对细胞质合成前体进行分类的明确机制。TIM23 施加的机制限制决定了 TMS 中的α-螺旋分类的两种途径的运作,这最终决定了膜蛋白的最终拓扑结构。我们使用生物疏水性标度来分配 OXPHOS 膜蛋白所有 TMS 的平均表观膜插入自由能(μΔG)和“交通灯”颜色代码,从而预测如果异位产生,哪些 TMS 更有可能被内化到线粒体中。我们提出,对于异位表达的蛋白质设计,必须允许在一些未将基因转移到核内的生物体中,高度疏水性 TMS 的多肽最大化μΔG。