Suppr超能文献

在集胞藻 PCC 6803 中优化的能量和氧化还原代谢。

Optimal energy and redox metabolism in the cyanobacterium Synechocystis sp. PCC 6803.

机构信息

Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden.

出版信息

NPJ Syst Biol Appl. 2023 Sep 22;9(1):47. doi: 10.1038/s41540-023-00307-3.

Abstract

Understanding energy and redox homeostasis and carbon partitioning is crucial for systems metabolic engineering of cell factories. Carbon metabolism alone cannot achieve maximal accumulation of metabolites in production hosts, since an efficient production of target molecules requires energy and redox balance, in addition to carbon flow. The interplay between cofactor regeneration and heterologous production in photosynthetic microorganisms is not fully explored. To investigate the optimality of energy and redox metabolism, while overproducing alkenes-isobutene, isoprene, ethylene and 1-undecene, in the cyanobacterium Synechocystis sp. PCC 6803, we applied stoichiometric metabolic modelling. Our network-wide analysis indicates that the rate of NAD(P)H regeneration, rather than of ATP, controls ATP/NADPH ratio, and thereby bioproduction. The simulation also implies that energy and redox balance is interconnected with carbon and nitrogen metabolism. Furthermore, we show that an auxiliary pathway, composed of serine, one-carbon and glycine metabolism, supports cellular redox homeostasis and ATP cycling. The study revealed non-intuitive metabolic pathways required to enhance alkene production, which are mainly driven by a few key reactions carrying a high flux. We envision that the presented comparative in-silico metabolic analysis will guide the rational design of Synechocystis as a photobiological production platform of target chemicals.

摘要

理解能量和氧化还原稳态以及碳分配对于细胞工厂的系统代谢工程至关重要。仅碳代谢不能使生产宿主中代谢物最大程度地积累,因为有效生产目标分子除了碳流之外还需要能量和氧化还原平衡。辅助因子再生和光合微生物中异源生产之间的相互作用尚未得到充分探索。为了在蓝藻集胞藻 PCC 6803 中过表达烯烃-异丁烯、异戊二烯、乙烯和 1-十一烯的同时,研究能量和氧化还原代谢的最优性,我们应用了化学计量代谢建模。我们的网络范围分析表明,NAD(P)H 再生的速率而不是 ATP 的速率控制着 ATP/NADPH 比,从而控制生物产量。模拟还表明,能量和氧化还原平衡与碳和氮代谢相互关联。此外,我们表明由丝氨酸、一碳和甘氨酸代谢组成的辅助途径支持细胞氧化还原稳态和 ATP 循环。该研究揭示了增强烯烃生产所需的非直观代谢途径,这些途径主要由几个具有高通量的关键反应驱动。我们设想,所提出的比较计算代谢分析将指导理性设计集胞藻作为目标化学品的光学生物生产平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7083/10516873/afc88edfbebc/41540_2023_307_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验