Zhan Renming, Liu Shiyu, Wang Wenyu, Chen Zihe, Tu Shuibin, Wang Xiancheng, Ge Hanlong, Luo Hongyu, Chai Tianqi, Ou Yangtao, Tan Yuchen, Sun Yongming
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
Mater Horiz. 2023 Oct 30;10(11):5246-5255. doi: 10.1039/d3mh01160g.
Wadsley-Roth phase niobium titanium oxide (TiNbO) is widely regarded as a promising anode candidate for fast-charging lithium-ion batteries due to its safe working potential and doubled capacity in comparison to the commercial fast-charging anode material (lithium titanium oxide, LiTiO). Although good fast charge/discharge performance was shown for nanostructured TiNbO, the small size would cause the low electrode compensation density and energy density of batteries, as well as parasitic reactions. Fundamental understanding of the electrochemical lithium insertion/extraction process and the structural evolution for the micrometer-scale single crystalline TiNbO (MSC-TiNbO) could provide insights to understand its inherent properties and possibility for fast-charging application. Here, we revealed the highly reversible structural evolution of the MSC-TiNbO during the lithiation/delithiation processes. Interestingly, an ion-conductive lithium niobate interphase was formed on the MSC-TiNbO surface during the formation cycle, which could facilitate fast ion diffusion on the material surface and support fast electrochemical reaction kinetics. Experimentally, the MSC-TiNbO delivered a high reversible capacity of 291.9 mA h g at 0.5C with a high initial Coulombic efficiency (>95%), and showed superb rate capability with a reasonable capacity of 55.6 mA h g under a high current density of 40C. An Ah-level pouch cell with a lithium cobalt oxide (LiCoO) cathode exhibited 91.5% capacity retention at 3C charging rate, which revealed the significant role of high crystallinity and formation of an ion conductive nano-interphase in realizing fast charging capability of practical TiNbO-based lithium-ion batteries.
瓦兹利-罗斯相铌钛氧化物(TiNbO)因其安全的工作电位以及与商用快速充电负极材料(锂钛氧化物,LiTiO)相比翻倍的容量,而被广泛认为是快速充电锂离子电池很有前景的负极候选材料。尽管纳米结构的TiNbO展现出了良好的快速充放电性能,但小尺寸会导致电池的低电极补偿密度和能量密度,以及寄生反应。对微米级单晶TiNbO(MSC-TiNbO)的电化学锂嵌入/脱出过程和结构演变的基本理解,能够为了解其固有特性以及快速充电应用的可能性提供见解。在此,我们揭示了MSC-TiNbO在锂化/脱锂过程中高度可逆的结构演变。有趣的是,在形成循环过程中,在MSC-TiNbO表面形成了一个离子导电的铌酸锂中间相,这可以促进材料表面的快速离子扩散并支持快速的电化学反应动力学。实验上,MSC-TiNbO在0.5C下具有291.9 mA h g的高可逆容量以及高初始库仑效率(>95%),并且在40C的高电流密度下展现出卓越的倍率性能,具有55.6 mA h g的合理容量。一个采用钴酸锂(LiCoO)正极的Ah级软包电池在3C充电速率下表现出91.5%的容量保持率,这揭示了高结晶度和形成离子导电纳米中间相在实现实用的基于TiNbO的锂离子电池快速充电能力方面的重要作用。