National Institute of Technology Goa, Goa, India.
National Institute of Technology Goa, Goa, India.
J Electrocardiol. 2023 Nov-Dec;81:169-175. doi: 10.1016/j.jelectrocard.2023.09.002. Epub 2023 Sep 16.
ECG quality assessment is crucial for reducing false alarms and physician strain in automated diagnosis of cardiovascular diseases. Recent researches have focused on constructing an automatic noisy ECG record rejection mechanism. This work develops a noisy ECG record rejection system using scalogram and Tucker tensor decomposition. The system can reject ECG records, which cannot be analyzed or diagnosed. Scalogram of all 12‑lead ECG signals per subject are stacked to form a 3-way tensor. Tucker tensor decomposition is applied with empirical settings to obtain the core tensor. The core tensor is reshaped to form the latent features set. When tested using the PhysioNet challenge 2011 dataset in five-fold cross validation settings, the RusBoost ensemble classifier proved to be a very reliable option, producing an accuracy of 92.4% along with sensitivity of 87.1% and specificity of 93.5%. According to the experimental findings, combining the scalogram with Tucker tensor decomposition yields competitive performance and has the potential to be used in actual evaluation of ECG quality.
心电图质量评估对于减少心血管疾病自动诊断中的假警报和医生的工作压力至关重要。最近的研究集中在构建自动噪声心电图记录剔除机制上。本工作使用声谱图和 Tucker 张量分解开发了一种噪声心电图记录剔除系统。该系统可以剔除无法分析或诊断的心电图记录。每个受试者的 12 导联心电图信号的声谱图堆叠形成一个 3 向张量。应用经验设置的 Tucker 张量分解以获得核心张量。核心张量被重塑为形成潜在特征集。在五重交叉验证设置中使用 PhysioNet 挑战 2011 数据集进行测试时,RusBoost 集成分类器被证明是一个非常可靠的选择,其准确率为 92.4%,敏感性为 87.1%,特异性为 93.5%。根据实验结果,将声谱图与 Tucker 张量分解相结合可以获得有竞争力的性能,并有可能用于实际的心电图质量评估。