Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
PLoS Comput Biol. 2018 Sep 24;14(9):e1006492. doi: 10.1371/journal.pcbi.1006492. eCollection 2018 Sep.
Constraint-based modeling techniques have become a standard tool for the in silico analysis of metabolic networks. To further improve their accuracy, recent methodological developments focused on integration of thermodynamic information in metabolic models to assess the feasibility of flux distributions by thermodynamic driving forces. Here we present OptMDFpathway, a method that extends the recently proposed framework of Max-min Driving Force (MDF) for thermodynamic pathway analysis. Given a metabolic network model, OptMDFpathway identifies both the optimal MDF for a desired phenotypic behavior as well as the respective pathway itself that supports the optimal driving force. OptMDFpathway is formulated as a mixed-integer linear program and is applicable to genome-scale metabolic networks. As an important theoretical result, we also show that there exists always at least one elementary mode in the network that reaches the maximal MDF. We employed our new approach to systematically identify all substrate-product combinations in Escherichia coli where product synthesis allows for concomitant net CO2 assimilation via thermodynamically feasible pathways. Although biomass synthesis cannot be coupled to net CO2 fixation in E. coli we found that as many as 145 of the 949 cytosolic carbon metabolites contained in the genome-scale model iJO1366 enable net CO2 incorporation along thermodynamically feasible pathways with glycerol as substrate and 34 with glucose. The most promising products in terms of carbon assimilation yield and thermodynamic driving forces are orotate, aspartate and the C4-metabolites of the tricarboxylic acid cycle. We also identified thermodynamic bottlenecks frequently limiting the maximal driving force of the CO2-fixing pathways. Our results indicate that heterotrophic organisms like E. coli hold a possibly underestimated potential for CO2 assimilation which may complement existing biotechnological approaches for capturing CO2. Furthermore, we envision that the developed OptMDFpathway approach can be used for many other applications within the framework of constrained-based modeling and for rational design of metabolic networks.
基于约束的建模技术已成为计算机分析代谢网络的标准工具。为了进一步提高它们的准确性,最近的方法发展集中在将热力学信息整合到代谢模型中,以评估通量分布的可行性,这些通量分布由热力学驱动力驱动。在这里,我们提出了 OptMDFpathway,这是一种扩展最近提出的最大-最小驱动力(MDF)热力学途径分析框架的方法。给定一个代谢网络模型,OptMDFpathway 确定了所需表型行为的最优 MDF 以及支持最优驱动力的相应途径。OptMDFpathway 被制定为一个混合整数线性规划,可以应用于基因组规模的代谢网络。作为一个重要的理论结果,我们还表明,在网络中总是至少存在一个达到最大 MDF 的基本模式。我们利用我们的新方法系统地确定了大肠杆菌中所有的底物-产物组合,在这些组合中,产物的合成允许通过热力学可行的途径同时进行净 CO2 同化。虽然在大肠杆菌中生物量的合成不能与净 CO2 固定偶联,但我们发现,在基因组规模模型 iJO1366 中包含的多达 145 种胞质碳代谢物能够沿着热力学可行的途径,以甘油为底物进行净 CO2 掺入,以葡萄糖为底物进行 34 种。就碳同化产率和热力学驱动力而言,最有前途的产物是乳清酸盐、天冬氨酸和三羧酸循环的 C4 代谢物。我们还确定了经常限制 CO2 固定途径最大驱动力的热力学瓶颈。我们的结果表明,像大肠杆菌这样的异养生物可能具有被低估的 CO2 同化潜力,这可能补充现有的捕获 CO2 的生物技术方法。此外,我们设想开发的 OptMDFpathway 方法可以在基于约束的建模框架内用于许多其他应用,并且可以用于代谢网络的合理设计。