Al-Bukhari Muath S, Abdulazeez Ismail, Abdelnaby Mahmoud M, Aljundi Isam H, Al Hamouz Othman Charles S
Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
Front Chem. 2023 Sep 7;11:1265324. doi: 10.3389/fchem.2023.1265324. eCollection 2023.
In this article, newly designed 3D porous polymers with tuned porosity were synthesized by the polycondensation of tetrakis (4-aminophenyl) methane with pyrrole to form polymer and with phenazine to form polymer. The polymerization reaction used -formaldehyde as a linker and nitric acid as a catalyst. The newly designed 3D porous polymers showed permanent porosity with a BET surface area of 575 m/g for and 389 m/g for . The structure and thermal stability were investigated by solid C-NMR spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). The performance of the synthesized polymers toward CO and H was evaluated, demonstrating adsorption capacities of 1.85 mmol/g and 2.10 mmol/g for CO by and , respectively. The importance of the synthesized polymers lies in their selectivity for CO capture, with CO/N selectivity of 43 and 51 for and , respectively. and polymers showed their capability for hydrogen storage with a capacity of 66 cm/g (0.6 wt%) and 87 cm/g (0.8 wt%), respectively, at 1 bar and 77 K. Molecular dynamics (MD) simulations using the grand canonical Monte Carlo (GCMC) method revealed the presence of considerable microporosity on , making it highly selective to CO. The exceptional removal capabilities, combined with the high thermal stability and microporosity, enable to be a potential material for flue gas purification and hydrogen storage.
在本文中,通过四(4 - 氨基苯基)甲烷与吡咯缩聚形成聚合物以及与吩嗪缩聚形成聚合物,合成了具有可调孔隙率的新型3D多孔聚合物。聚合反应使用甲醛作为连接剂,硝酸作为催化剂。新设计的3D多孔聚合物表现出永久孔隙率,其中一种的BET表面积为575 m²/g,另一种为389 m²/g。通过固体碳 - 氮核磁共振光谱、傅里叶变换红外(FT - IR)光谱和热重分析(TGA)研究了其结构和热稳定性。评估了合成聚合物对一氧化碳和氢气的性能,结果表明一种聚合物对一氧化碳的吸附容量分别为1.85 mmol/g和2.10 mmol/g。合成聚合物的重要性在于其对一氧化碳捕获的选择性,其中一种聚合物对一氧化碳/氮气的选择性分别为43和51。两种聚合物分别在1 bar和77 K下表现出储氢能力,储氢容量分别为66 cm³/g(0.6 wt%)和87 cm³/g(0.8 wt%)。使用巨正则蒙特卡罗(GCMC)方法的分子动力学(MD)模拟表明一种聚合物存在大量微孔,使其对一氧化碳具有高度选择性。其出色的去除能力,再加上高热稳定性和微孔性,使得该聚合物成为烟道气净化和储氢的潜在材料。