Mumtaz Nida, Akram Nadia, Zia Khalid Mahmood, Saeed Muhammad, Usman Muhammad
Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan.
ACS Omega. 2023 Sep 7;8(37):33310-33320. doi: 10.1021/acsomega.3c02371. eCollection 2023 Sep 19.
Petrochemical costs, limited fossil fuel reserves, and concerns about greenhouse gas emissions have raised interest in developing renewable approaches for synthesizing biobased polyurethanes. This study aims to solve these problems by making nanocrystalline hydroxyapatite (HA) reinforcement from waste chicken eggshells and adding it to polyurethane synthesis through in situ polymerization. The novelty of the research lies in the utilization of HA as a reinforcement material and renewable resources for polyurethane production. The results confirm that HA was successfully added to the polyurethane backbone. Fourier transform infrared (FTIR) analysis confirmed that the NCO groups were changed to urethane linkages. TGA examination demonstrated that the samples exhibited thermal stability up to 457 °C with a mass loss of 61%, indicating enhanced thermal stability. DMA measurements showed improved mechanical properties of the synthesized polyurethanes, with storage modulus ('), complex modulus (), and compliance complex () values of 0.177, 22.522, and 0.660 MPa, respectively. SEM analysis confirmed the homogeneous surface and well-dispersed HA reinforcement. Swelling characteristics revealed an optimum absorption of 30% HO, 35% CHOH, and 45% CCl. Polyurethane composites exhibited significant chemical resistance and hydrolytic stability in acidic and basic media. Additionally, the composites demonstrated efficient adsorption of methyl orange from wastewater, with the PUHCI series achieving a maximum adsorption capacity of 85.50 mg/g under optimal conditions of 0.030 g/mL dose, 45 °C temperature, 2.5 h contact time, and pH 6.0..
石化成本、有限的化石燃料储备以及对温室气体排放的担忧,引发了人们对开发合成生物基聚氨酯的可再生方法的兴趣。本研究旨在通过利用废弃鸡蛋壳制备纳米晶羟基磷灰石(HA)增强材料,并通过原位聚合法将其添加到聚氨酯合成中来解决这些问题。该研究的新颖之处在于利用HA作为增强材料以及用于聚氨酯生产的可再生资源。结果证实HA已成功添加到聚氨酯主链中。傅里叶变换红外(FTIR)分析证实NCO基团转变为聚氨酯键。热重分析(TGA)表明,样品在高达457°C时具有热稳定性,质量损失为61%,表明热稳定性增强。动态机械分析(DMA)测量显示合成聚氨酯的机械性能有所改善,储能模量(')、复数模量()和复数柔量()值分别为0.177、22.522和0.660 MPa。扫描电子显微镜(SEM)分析证实了表面均匀且HA增强材料分散良好。溶胀特性表明对水、甲醇和四氯化碳的最佳吸收分别为30%、35%和45%。聚氨酯复合材料在酸性和碱性介质中表现出显著的耐化学性和水解稳定性。此外,该复合材料对废水中的甲基橙具有高效吸附能力,在0.030 g/mL剂量、45°C温度、2.5 h接触时间和pH 6.0的最佳条件下,PUHCI系列的最大吸附容量达到85.50 mg/g。