Shah Aunggat, Senapati Subhabrata, Murthy H C Ananda, Singh Laishram Robindro, Mahato Mrityunjoy
Physics Division, Department of Basic Sciences and Social Sciences, School of Technology, North-Eastern Hill University, Shillong, Meghalaya 793022, India.
Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, 1888 Adama, Ethiopia.
ACS Omega. 2023 Sep 7;8(37):33380-33391. doi: 10.1021/acsomega.3c03044. eCollection 2023 Sep 19.
The NiO-CNT and NiO-Fe-CNT composites that have been prepared from waste high density polyethylene plastic and their carbon nanotube (CNT) quality-dependent supercapacitance tuning have been reported here. Multiwalled CNT (MWCNT) formation has been confirmed from TEM and Raman spectra with an / ratio of 0.77, which stands for high graphitization. The specific surface area (SSA) of MWCNTs in the NiO-Fe-CNT composite was 87.8 m/g, while in the NiO-CNT composite, it was 25 m/g. NiO-Fe-CNT displayed higher specific capacitance and energy density (1360 Fg and 1180 W h kg) than NiO-CNT (1250 Fg and 1000 W h kg), which may be due to the presence of higher-quality MWCNTs in the NiO-Fe-CNT composite. NiO-Fe-CNT displayed higher contributions of electric double-layer capacitor (59%) behavior compared to NiO-CNT (38%) and represented a hybrid supercapacitor. NiO-Fe-CNT also displayed a capacitive retention of 96% after 1000 charge-discharge cycles. Furthermore, studies in acidic electrolytes revealed higher performance of NiO-Fe-CNT than NiO-CNT, displaying specific capacitances of NiO-Fe-CNT to be 1147 Fg in 2 M HSO and 943 Fg in 2 M HCl. It has been qualitatively explored that the quality of CNTs, SSA, and quantum confinement effects in the composites may be the factors responsible for the performance difference in NiO-Fe-CNT and NiO-CNT. The present work is geared toward the low-cost fabrication of high-quality CNT composites for supercapacitors and energy storage applications. The present work also contributes quantitatively to the understanding of CNT quality as an important parameter for the performance of CNT-composite-based supercapacitors.
本文报道了由废弃高密度聚乙烯塑料制备的NiO-CNT和NiO-Fe-CNT复合材料,以及它们基于碳纳米管(CNT)质量的超级电容调谐情况。通过透射电子显微镜(TEM)和拉曼光谱确认了多壁碳纳米管(MWCNT)的形成,其I/D比为0.77,代表高石墨化程度。NiO-Fe-CNT复合材料中MWCNT的比表面积(SSA)为87.8 m²/g,而在NiO-CNT复合材料中为25 m²/g。与NiO-CNT(1250 F/g和1000 W h/kg)相比,NiO-Fe-CNT表现出更高的比电容和能量密度(1360 F/g和1180 W h/kg),这可能是由于NiO-Fe-CNT复合材料中存在更高质量的MWCNT。与NiO-CNT(38%)相比,NiO-Fe-CNT表现出更高的双电层电容器行为贡献(59%),代表一种混合超级电容器。NiO-Fe-CNT在1000次充放电循环后还表现出96%的电容保持率。此外,在酸性电解质中的研究表明,NiO-Fe-CNT的性能高于NiO-CNT,在2 M H₂SO₄中NiO-Fe-CNT的比电容为1147 F/g,在2 M HCl中为943 F/g。定性研究表明,复合材料中CNT的质量、SSA和量子限制效应可能是导致NiO-Fe-CNT和NiO-CNT性能差异的因素。目前的工作旨在低成本制造用于超级电容器和能量存储应用的高质量CNT复合材料。目前的工作还定量地有助于理解CNT质量作为基于CNT复合材料的超级电容器性能的一个重要参数。