Suppr超能文献

用于学习生态瞬时数据异质群体动态的时间生成模型。

Temporal Generative Models for Learning Heterogeneous Group Dynamics of Ecological Momentary Data.

作者信息

Kim Soohyun, Kim Young-Geun, Wang Yuanjia

出版信息

bioRxiv. 2023 Sep 14:2023.09.13.557652. doi: 10.1101/2023.09.13.557652.

Abstract

One of the goals of precision psychiatry is to characterize mental disorders in an individualized manner, taking into account the underlying dynamic processes. Recent advances in mobile technologies have enabled the collection of Ecological Momentary Assessments (EMAs) that capture multiple responses in real-time at high frequency. However, EMA data is often multi-dimensional, correlated, and hierarchical. Mixed-effects models are commonly used but may require restrictive assumptions about the fixed and random effects and the correlation structure. The Recurrent Temporal Restricted Boltzmann Machine (RTRBM) is a generative neural network that can be used to model temporal data, but most existing RTRBM approaches do not account for the potential heterogeneity of group dynamics within a population based on available covariates. In this paper, we propose a new temporal generative model, the Heterogeneous-Dynamics Restricted Boltzmann Machine (HDRBM), to learn the heterogeneous group dynamics and demonstrate the effectiveness of this approach on simulated and real-world EMA data sets. We show that by incorporating covariates, HDRBM can improve accuracy and interpretability, explore the underlying drivers of the group dynamics of participants, and serve as a generative model for EMA studies.

摘要

精准精神病学的目标之一是以个性化方式描述精神障碍,同时考虑潜在的动态过程。移动技术的最新进展使得能够收集生态瞬时评估(EMA)数据,这些数据可以高频实时捕捉多种反应。然而,EMA数据通常是多维度的、相关的且具有层次性。混合效应模型是常用的,但可能需要对固定效应、随机效应和相关结构做出限制性假设。循环时间受限玻尔兹曼机(RTRBM)是一种生成神经网络,可用于对时间数据进行建模,但大多数现有的RTRBM方法没有考虑基于可用协变量的人群中群体动态的潜在异质性。在本文中,我们提出了一种新的时间生成模型——异质动力学受限玻尔兹曼机(HDRBM),以学习异质群体动态,并在模拟和真实世界的EMA数据集上证明该方法的有效性。我们表明,通过纳入协变量,HDRBM可以提高准确性和可解释性,探索参与者群体动态的潜在驱动因素,并作为EMA研究的生成模型。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验