Suppr超能文献

用于学习生态瞬时评估数据异质群体动态的时间生成模型。

Temporal generative models for learning heterogeneous group dynamics of ecological momentary assessment data.

机构信息

Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, 10032, United States.

Department of Psychiatry, Columbia University Irving Medical Center, Columbia University, New York, 10032, United States.

出版信息

Biometrics. 2024 Oct 3;80(4). doi: 10.1093/biomtc/ujae115.

Abstract

One of the goals of precision psychiatry is to characterize mental disorders in an individualized manner, taking into account the underlying dynamic processes. Recent advances in mobile technologies have enabled the collection of ecological momentary assessments that capture multiple responses in real-time at high frequency. However, ecological momentary assessment data are often multi-dimensional, correlated, and hierarchical. Mixed-effect models are commonly used but may require restrictive assumptions about the fixed and random effects and the correlation structure. The recurrent temporal restricted Boltzmann machine (RTRBM) is a generative neural network that can be used to model temporal data, but most existing RTRBM approaches do not account for the potential heterogeneity of group dynamics within a population based on available covariates. In this paper, we propose a new temporal generative model, the HDRBM, to learn the heterogeneous group dynamics and demonstrate the effectiveness of this approach on simulated and real-world ecological momentary assessment datasets. We show that by incorporating covariates, HDRBM can improve accuracy and interpretability, explore the underlying drivers of the group dynamics of participants, and serve as a generative model for ecological momentary assessment studies.

摘要

精准精神病学的目标之一是以个体化的方式描述精神障碍,同时考虑到潜在的动态过程。移动技术的最新进展使得能够以高频率实时采集生态瞬时评估,从而捕获多个响应。然而,生态瞬时评估数据通常是多维的、相关的和分层的。混合效应模型通常被使用,但可能需要对固定效应和随机效应以及相关结构做出限制假设。递归时间受限玻尔兹曼机 (RTRBM) 是一种可用于对时间数据进行建模的生成式神经网络,但大多数现有的 RTRBM 方法没有考虑基于现有协变量的群体内潜在的异质群体动态。在本文中,我们提出了一种新的时间生成模型 HDRBM,以学习异质群体动态,并在模拟和真实世界的生态瞬时评估数据集上展示了该方法的有效性。我们表明,通过纳入协变量,HDRBM 可以提高准确性和可解释性,探索参与者群体动态的潜在驱动因素,并作为生态瞬时评估研究的生成模型。

相似文献

本文引用的文献

1
Learning Individualized Treatment Rules for Multiple-Domain Latent Outcomes.学习多领域潜在结果的个性化治疗规则。
J Am Stat Assoc. 2021;116(533):269-282. doi: 10.1080/01621459.2020.1817751. Epub 2020 Oct 19.
9
An Overview of Heart Rate Variability Metrics and Norms.心率变异性指标与规范概述
Front Public Health. 2017 Sep 28;5:258. doi: 10.3389/fpubh.2017.00258. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验