Strelez Carly, Perez Rachel, Chlystek John S, Cherry Christopher, Yoon Ah Young, Haliday Bethany, Shah Curran, Ghaffarian Kimya, Sun Ren X, Jiang Hannah, Lau Roy, Schatz Aaron, Lenz Heinz-Josef, Katz Jonathan E, Mumenthaler Shannon M
Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA.
C M Cherry Consulting, Baltimore, MD, USA.
bioRxiv. 2023 Sep 17:2023.09.14.557797. doi: 10.1101/2023.09.14.557797.
Three-dimensional (3D) in vitro models are essential in cancer research, but they often neglect physical forces. In our study, we combined patient-derived tumor organoids with a microfluidic organ-on-chip system to investigate colorectal cancer (CRC) invasion in the tumor microenvironment (TME). This allowed us to create patient-specific tumor models and assess the impact of physical forces on cancer biology. Our findings showed that the organoid-on-chip models more closely resembled patient tumors at the transcriptional level, surpassing organoids alone. Using 'omics' methods and live-cell imaging, we observed heightened responsiveness of KRAS mutant tumors to TME mechanical forces. These tumors also utilized the γ-aminobutyric acid (GABA) neurotransmitter as an energy source, increasing their invasiveness. This bioengineered model holds promise for advancing our understanding of cancer progression and improving CRC treatments.
三维(3D)体外模型在癌症研究中至关重要,但它们常常忽略物理力。在我们的研究中,我们将患者来源的肿瘤类器官与微流控芯片器官系统相结合,以研究肿瘤微环境(TME)中的结直肠癌(CRC)侵袭。这使我们能够创建患者特异性肿瘤模型,并评估物理力对癌症生物学的影响。我们的研究结果表明,芯片上类器官模型在转录水平上更接近患者肿瘤,优于单独的类器官。使用“组学”方法和活细胞成像,我们观察到KRAS突变肿瘤对TME机械力的反应增强。这些肿瘤还利用γ-氨基丁酸(GABA)神经递质作为能量来源,增加了它们的侵袭性。这种生物工程模型有望促进我们对癌症进展的理解并改善CRC治疗。