Suppr超能文献

工程化血管化类器官芯片模型。

Engineering Vascularized Organoid-on-a-Chip Models.

机构信息

Department of Biomedical Engineering, University of California, Davis, California 95616, USA; email:

Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA.

出版信息

Annu Rev Biomed Eng. 2021 Jul 13;23:141-167. doi: 10.1146/annurev-bioeng-090120-094330. Epub 2021 Mar 23.

Abstract

Recreating human organ-level function in vitro is a rapidly evolving field that integrates tissue engineering, stem cell biology, and microfluidic technology to produce 3D organoids. A critical component of all organs is the vasculature. Herein, we discuss general strategies to create vascularized organoids, including common source materials, and survey previous work using vascularized organoids to recreate specific organ functions and simulate tumor progression. Vascularization is not only an essential component of individual organ function but also responsible for coupling the fate of all organs and their functions. While some success in coupling two or more organs together on a single platform has been demonstrated, we argue that the future of vascularized organoid technology lies in creating organoid systems complete with tissue-specific microvasculature and in coupling multiple organs through a dynamic vascular network to create systems that can respond to changing physiological conditions.

摘要

在体外重现人体器官水平的功能是一个快速发展的领域,它集成了组织工程、干细胞生物学和微流控技术,以产生 3D 类器官。所有器官的一个关键组成部分是脉管系统。本文讨论了创建血管化类器官的一般策略,包括常见的来源材料,并调查了以前使用血管化类器官来重现特定器官功能和模拟肿瘤进展的工作。血管化不仅是单个器官功能的重要组成部分,也是连接所有器官及其功能命运的关键。虽然已经证明在单个平台上将两个或更多器官连接在一起取得了一些成功,但我们认为血管化类器官技术的未来在于创建具有组织特异性微血管的类器官系统,并通过动态血管网络连接多个器官,以创建能够响应生理变化的系统条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验