Anjur-Dietrich Maya I, Hererra Vicente Gomez, Farhadifar Reza, Wu Haiyin, Merta Holly, Bahmanyar Shirin, Shelley Michael J, Needleman Daniel J
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA.
bioRxiv. 2023 Sep 12:2023.09.11.557210. doi: 10.1101/2023.09.11.557210.
The forces which orient the spindle in human cells remain poorly understood due to a lack of direct mechanical measurements in mammalian systems. We use magnetic tweezers to measure the force on human mitotic spindles. Combining the spindle's measured resistance to rotation, the speed it rotates after laser ablating astral microtubules, and estimates of the number of ablated microtubules reveals that each microtubule contacting the cell cortex is subject to ~1 pN of pulling force, suggesting that each is pulled on by an individual dynein motor. We find that the concentration of dynein at the cell cortex and extent of dynein clustering are key determinants of the spindle's resistance to rotation, with little contribution from cytoplasmic viscosity, which we explain using a biophysically based mathematical model. This work reveals how pulling forces on astral microtubules determine the mechanics of spindle orientation and demonstrates the central role of cortical dynein clustering.
由于在哺乳动物系统中缺乏直接的力学测量,人类细胞中使纺锤体定向的力仍未得到很好的理解。我们使用磁镊来测量人类有丝分裂纺锤体上的力。结合纺锤体测量到的抗旋转阻力、激光消融星体微管后其旋转的速度以及对消融微管数量的估计,发现每个与细胞皮层接触的微管都受到约1皮牛的拉力,这表明每个微管都由单个动力蛋白马达拉动。我们发现动力蛋白在细胞皮层的浓度和动力蛋白聚集的程度是纺锤体抗旋转能力的关键决定因素,而细胞质粘度的贡献很小,我们使用基于生物物理的数学模型对此进行了解释。这项工作揭示了星体微管上的拉力如何决定纺锤体定向的力学原理,并证明了皮层动力蛋白聚集的核心作用。