School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA.
Dev Cell. 2024 Sep 23;59(18):2429-2442.e4. doi: 10.1016/j.devcel.2024.05.022. Epub 2024 Jun 11.
The forces that orient the spindle in human cells remain poorly understood due to a lack of direct mechanical measurements in mammalian systems. We use magnetic tweezers to measure the force on human mitotic spindles. Combining the spindle's measured resistance to rotation, the speed at which it rotates after laser ablating astral microtubules, and estimates of the number of ablated microtubules reveals that each microtubule contacting the cell cortex is subject to ∼5 pN of pulling force, suggesting that each is pulled on by an individual dynein motor. We find that the concentration of dynein at the cell cortex and extent of dynein clustering are key determinants of the spindle's resistance to rotation, with little contribution from cytoplasmic viscosity, which we explain using a biophysically based mathematical model. This work reveals how pulling forces on astral microtubules determine the mechanics of spindle orientation and demonstrates the central role of cortical dynein clustering.
由于在哺乳动物系统中缺乏直接的机械测量,因此定向人类细胞纺锤体的力仍然知之甚少。我们使用磁镊测量人类有丝分裂纺锤体上的力。将纺锤体的旋转阻力与激光消融星体微管后旋转的速度以及被消融微管的数量估计值相结合,表明与细胞皮层接触的每根微管都受到约 5 pN 的拉力,这表明每根微管都受到一个单独的动力蛋白马达的拉动。我们发现,动力蛋白在细胞皮层的浓度和动力蛋白聚集的程度是决定纺锤体旋转阻力的关键因素,细胞质黏度的贡献很小,我们使用基于生物物理的数学模型对此进行了解释。这项工作揭示了星体微管上的拉力如何决定纺锤体定向的力学特性,并证明了皮质动力蛋白聚集的核心作用。