Suppr超能文献

通过动态铁掺入原位调节钴/氧化铁-羟基氧化铁交换以实现大电流密度下稳健的析氧反应

In Situ Regulating Cobalt/Iron Oxide-Oxyhydroxide Exchange by Dynamic Iron Incorporation for Robust Oxygen Evolution at Large Current Density.

作者信息

Li Dongyang, Xiang Rong, Yu Fang, Zeng Jinsong, Zhang Yong, Zhou Weichang, Liao Liling, Zhang Yan, Tang Dongsheng, Zhou Haiqing

机构信息

Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China.

State Key Laboratory of Marine Resource Utilization in South China Sea, and Department of Materials Science and Engineering, Hainan University, Haikou, 570228, China.

出版信息

Adv Mater. 2024 Feb;36(5):e2305685. doi: 10.1002/adma.202305685. Epub 2023 Dec 5.

Abstract

The key dilemma for green hydrogen production via electrocatalytic water splitting is the high overpotential required for anodic oxygen evolution reaction (OER). Co/Fe-based materials show superior catalytic OER activity to noble metal-based catalysts, but still lag far behind the state-of-the-art Ni/Fe-based catalysts probably due to undesirable side segregation of FeOOH with poor conductivity and unsatisfied structural durability under large current density. Here, a robust and durable OER catalyst affording current densities of 500 and 1000 mA cm at extremely low overpotentials of 290 and 304 mV in base is reported. This catalyst evolves from amorphous bimetallic FeOOH/Co(OH) heterostructure microsheet arrays fabricated by a facile mechanical stirring strategy. Especially, in situ X-ray photoelectron spectroscopy (XPS) and Raman analysis decipher the rapid reconstruction of FeOOH/Co(OH) into dynamically stable Co Fe OOH active phase through in situ iron incorporation into CoOOH, which perform as the real active sites accelerating the rate-determining step supported by density functional theory calculations. By coupling with MoNi /MoO cathode, the self-assembled alkaline electrolyzer can deliver 500 mA cm at a low cell voltage of 1.613 V, better than commercial IrO ||Pt/C and most of reported transition metal-based electrolyzers. This work provides a feasible strategy for the exploration and design of industrial water-splitting catalysts for large-scale green hydrogen production.

摘要

通过电催化水分解生产绿色氢气的关键难题在于阳极析氧反应(OER)所需的高过电位。钴/铁基材料对析氧反应显示出优于贵金属基催化剂的催化活性,但可能由于导电性差的氢氧化铁的不良侧偏析以及在大电流密度下结构耐久性不足,仍远远落后于最先进的镍/铁基催化剂。在此,报道了一种坚固耐用的析氧反应催化剂,在碱性条件下,在极低的过电位290和304 mV时可提供500和1000 mA cm²的电流密度。该催化剂由通过简便的机械搅拌策略制备的非晶态双金属氢氧化铁/氢氧化钴异质结构微片阵列演变而来。特别地,原位X射线光电子能谱(XPS)和拉曼分析表明,通过将铁原位掺入氢氧化钴中,氢氧化铁/氢氧化钴迅速重构为动态稳定的钴铁氢氧化氧活性相,这作为真正的活性位点加速了速率决定步骤,密度泛函理论计算也支持这一点。通过与钼镍/氧化钼阴极耦合,自组装碱性电解槽在1.613 V的低电池电压下可提供500 mA cm²的电流,优于商业氧化铱||铂/碳以及大多数已报道的过渡金属基电解槽。这项工作为探索和设计用于大规模绿色氢气生产的工业水分解催化剂提供了一种可行的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验