Suppr超能文献

由Fe(PO)/NiP三维泡沫衍生的高活性催化剂用于极高效的水氧化反应。

Highly active catalyst derived from a 3D foam of Fe(PO)/NiP for extremely efficient water oxidation.

作者信息

Zhou Haiqing, Yu Fang, Sun Jingying, He Ran, Chen Shuo, Chu Ching-Wu, Ren Zhifeng

机构信息

Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 77204.

Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 77204;

出版信息

Proc Natl Acad Sci U S A. 2017 May 30;114(22):5607-5611. doi: 10.1073/pnas.1701562114. Epub 2017 May 15.

Abstract

Commercial hydrogen production by electrocatalytic water splitting will benefit from the realization of more efficient and less expensive catalysts compared with noble metal catalysts, especially for the oxygen evolution reaction, which requires a current density of 500 mA/cm at an overpotential below 300 mV with long-term stability. Here we report a robust oxygen-evolving electrocatalyst consisting of ferrous metaphosphate on self-supported conductive nickel foam that is commercially available in large scale. We find that this catalyst, which may be associated with the in situ generated nickel-iron oxide/hydroxide and iron oxyhydroxide catalysts at the surface, yields current densities of 10 mA/cm at an overpotential of 177 mV, 500 mA/cm at only 265 mV, and 1,705 mA/cm at 300 mV, with high durability in alkaline electrolyte of 1 M KOH even after 10,000 cycles, representing activity enhancement by a factor of 49 in boosting water oxidation at 300 mV relative to the state-of-the-art IrO catalyst.

摘要

与贵金属催化剂相比,通过电催化水分解进行商业制氢将受益于更高效、成本更低的催化剂的实现,特别是对于析氧反应而言,该反应需要在低于300 mV的过电位下实现500 mA/cm²的电流密度并具备长期稳定性。在此,我们报道了一种由负载于可大规模商购的自支撑导电泡沫镍上的偏磷酸亚铁组成的稳健析氧电催化剂。我们发现,这种催化剂可能与表面原位生成的镍铁氧化物/氢氧化物和羟基氧化铁催化剂有关,在177 mV的过电位下可产生10 mA/cm²的电流密度,在仅265 mV的过电位下可达到500 mA/cm²,在300 mV时可达1705 mA/cm²,在1 M KOH的碱性电解液中即使经过10000次循环仍具有高耐久性,相对于最先进的IrO₂催化剂,在300 mV下促进水氧化的活性提高了49倍。

相似文献

1
Highly active catalyst derived from a 3D foam of Fe(PO)/NiP for extremely efficient water oxidation.
Proc Natl Acad Sci U S A. 2017 May 30;114(22):5607-5611. doi: 10.1073/pnas.1701562114. Epub 2017 May 15.
4
Phosphorization engineering ameliorated the electrocatalytic activity for overall water splitting on NiS nanosheets.
Dalton Trans. 2019 Sep 21;48(35):13466-13471. doi: 10.1039/c9dt02841b. Epub 2019 Aug 27.
5
Ultrathin Amorphous Iron-Nickel Boride Nanosheets for Highly Efficient Electrocatalytic Oxygen Production.
Chemistry. 2018 Dec 10;24(69):18502-18511. doi: 10.1002/chem.201802092. Epub 2018 Jun 25.
6
Self-Supported Nickel Iron Layered Double Hydroxide-Nickel Selenide Electrocatalyst for Superior Water Splitting Activity.
ACS Appl Mater Interfaces. 2017 Oct 4;9(39):33766-33774. doi: 10.1021/acsami.7b07984. Epub 2017 Sep 19.
7
Cost-effective and efficient water and urea oxidation catalysis using nickel-iron oxyhydroxide nanosheets synthesized by an ultrafast method.
J Colloid Interface Sci. 2021 Feb 15;584:760-769. doi: 10.1016/j.jcis.2020.09.108. Epub 2020 Oct 6.

引用本文的文献

1
Nano Si-Doped Ruthenium Oxide Particles from Caged Precursors for High-Performance Acidic Oxygen Evolution.
Adv Sci (Weinh). 2023 May;10(13):e2207429. doi: 10.1002/advs.202207429. Epub 2023 Feb 21.
2
High-performance self-supporting AgCoPO/CFP for hydrogen evolution reaction under alkaline conditions.
RSC Adv. 2022 May 25;12(25):15751-15758. doi: 10.1039/d2ra02621j. eCollection 2022 May 23.
3
Co-Based Nanosheets with Transitional Metal Doping for Oxygen Evolution Reaction.
Nanomaterials (Basel). 2022 May 24;12(11):1788. doi: 10.3390/nano12111788.
4
High-performance seawater oxidation by a homogeneous multimetallic layered double hydroxide electrocatalyst.
Proc Natl Acad Sci U S A. 2022 May 3;119(18):e2202382119. doi: 10.1073/pnas.2202382119. Epub 2022 Apr 27.
5
Ultrahigh oxygen evolution reaction activity in Au doped co-based nanosheets.
RSC Adv. 2022 Feb 22;12(10):6205-6213. doi: 10.1039/d1ra09094a. eCollection 2022 Feb 16.
6
Operando Photo-Electrochemical Catalysts Synchrotron Studies.
Nanomaterials (Basel). 2022 Mar 2;12(5):839. doi: 10.3390/nano12050839.
7
Spherical Ni S /Fe-NiP Magic Cube with Ultrahigh Water/Seawater Oxidation Efficiency.
Adv Sci (Weinh). 2022 Mar;9(7):e2104846. doi: 10.1002/advs.202104846. Epub 2022 Jan 12.
10
Nanostructured Ni-Cu Electrocatalysts for the Oxygen Evolution Reaction.
Catal Sci Technol. 2020 Aug 7;10(15):4960-4967. doi: 10.1039/d0cy00427h. Epub 2020 Jul 1.

本文引用的文献

1
Highly Efficient Hydrogen Evolution from Edge-Oriented WSSe Particles on Three-Dimensional Porous NiSe Foam.
Nano Lett. 2016 Dec 14;16(12):7604-7609. doi: 10.1021/acs.nanolett.6b03467. Epub 2016 Nov 4.
3
Transition-Metal (Co, Ni, and Fe)-Based Electrocatalysts for the Water Oxidation Reaction.
Adv Mater. 2016 Nov;28(42):9266-9291. doi: 10.1002/adma.201602270. Epub 2016 Aug 29.
4
A nickel iron diselenide-derived efficient oxygen-evolution catalyst.
Nat Commun. 2016 Aug 9;7:12324. doi: 10.1038/ncomms12324.
5
Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium-Oxygen Batteries.
J Am Chem Soc. 2016 Jun 22;138(24):7574-83. doi: 10.1021/jacs.6b01821. Epub 2016 Jun 10.
6
Design and Synthesis of FeOOH/CeO2 Heterolayered Nanotube Electrocatalysts for the Oxygen Evolution Reaction.
Adv Mater. 2016 Jun;28(23):4698-703. doi: 10.1002/adma.201600054. Epub 2016 Apr 13.
7
Homogeneously dispersed multimetal oxygen-evolving catalysts.
Science. 2016 Apr 15;352(6283):333-7. doi: 10.1126/science.aaf1525. Epub 2016 Mar 24.
8
FeOOH/Co/FeOOH Hybrid Nanotube Arrays as High-Performance Electrocatalysts for the Oxygen Evolution Reaction.
Angew Chem Int Ed Engl. 2016 Mar 7;55(11):3694-8. doi: 10.1002/anie.201511447. Epub 2016 Feb 16.
9
Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel.
Nature. 2016 Jan 7;529(7584):68-71. doi: 10.1038/nature16455.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验