Suppr超能文献

结合温度扰动与 X 射线晶体学研究动态大分子:实验方法的全面讨论。

Combining temperature perturbations with X-ray crystallography to study dynamic macromolecules: A thorough discussion of experimental methods.

机构信息

Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, United States.

出版信息

Methods Enzymol. 2023;688:255-305. doi: 10.1016/bs.mie.2023.07.008. Epub 2023 Aug 12.

Abstract

Temperature is an important state variable that governs the behavior of microscopic systems, yet crystallographers rarely exploit temperature changes to study the structure and dynamics of biological macromolecules. In fact, approximately 90% of crystal structures in the Protein Data Bank were determined under cryogenic conditions, because sample cryocooling makes crystals robust to X-ray radiation damage and facilitates data collection. On the other hand, cryocooling can introduce artifacts into macromolecular structures, and can suppress conformational dynamics that are critical for function. Fortunately, recent advances in X-ray detector technology, X-ray sources, and computational data processing algorithms make non-cryogenic X-ray crystallography easier and more broadly applicable than ever before. Without the reliance on cryocooling, high-resolution crystallography can be combined with various temperature perturbations to gain deep insight into the conformational landscapes of macromolecules. This Chapter reviews the historical reasons for the prevalence of cryocooling in macromolecular crystallography, and discusses its potential drawbacks. Next, the Chapter summarizes technological developments and methodologies that facilitate non-cryogenic crystallography experiments. Finally, the chapter discusses the theoretical underpinnings and practical aspects of multi-temperature and temperature-jump crystallography experiments, which are powerful tools for understanding the relationship between the structure, dynamics, and function of proteins and other biological macromolecules.

摘要

温度是控制微观系统行为的一个重要状态变量,但晶体学家很少利用温度变化来研究生物大分子的结构和动态。事实上,蛋白质数据库中约 90%的晶体结构是在低温条件下确定的,因为样品的冷冻冷却使晶体对 X 射线辐射损伤具有更强的抗性,并有助于数据收集。另一方面,冷冻冷却会给大分子结构引入假象,并抑制对功能至关重要的构象动态。幸运的是,X 射线探测器技术、X 射线源和计算数据处理算法的最新进展使得非低温 X 射线晶体学比以往任何时候都更容易和更广泛地应用。无需依赖冷冻冷却,高分辨率晶体学可以与各种温度扰动相结合,深入了解大分子的构象景观。本章回顾了低温冷却在大分子晶体学中流行的历史原因,并讨论了其潜在的缺点。接下来,本章总结了促进非低温晶体学实验的技术发展和方法。最后,本章讨论了多温度和温度跃变晶体学实验的理论基础和实际方面,这些实验是理解蛋白质和其他生物大分子结构、动态和功能之间关系的有力工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验