Suppr超能文献

自发 EEG 中的临界动力学可预测麻醉诱导的意识丧失和微扰复杂性。

Critical dynamics in spontaneous EEG predict anesthetic-induced loss of consciousness and perturbational complexity.

机构信息

Montreal General Hospital, McGill University Health Centre, Montreal, QC, Canada.

Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.

出版信息

Commun Biol. 2024 Aug 5;7(1):946. doi: 10.1038/s42003-024-06613-8.

Abstract

Consciousness has been proposed to be supported by electrophysiological patterns poised at criticality, a dynamical regime which exhibits adaptive computational properties, maximally complex patterns and divergent sensitivity to perturbation. Here, we investigate dynamical properties of the resting-state electroencephalogram (EEG) of healthy subjects undergoing general anesthesia with propofol, xenon or ketamine. Importantly, all participants were unresponsive under anesthesia, while consciousness was retained only during ketamine anesthesia (in the form of vivid dreams), enabling an experimental dissociation between unresponsiveness and unconsciousness. For each condition, we measure (i) avalanche criticality, (ii) chaoticity, and (iii) criticality-related metrics, revealing that states of unconsciousness are characterized by a distancing from both avalanche criticality and the edge of chaos. We then ask whether these same dynamical properties are predictive of the perturbational complexity index (PCI), a TMS-based measure that has shown remarkably high sensitivity in detecting consciousness independently of behavior. We successfully predict individual subjects' PCI values with considerably high accuracy from resting-state EEG dynamical properties alone. Our results establish a firm link between perturbational complexity and criticality, and provide further evidence that criticality is a necessary condition for the emergence of consciousness.

摘要

意识被认为是由处于临界点的电生理模式支持的,临界点是一种表现出适应性计算特性、最大复杂性模式和对干扰发散敏感性的动力学状态。在这里,我们研究了接受异丙酚、氙气或氯胺酮全身麻醉的健康受试者静息状态脑电图 (EEG) 的动力学特性。重要的是,所有参与者在麻醉下均无反应,而意识仅在氯胺酮麻醉期间保留(以生动的梦境形式),从而可以在无反应和无意识之间进行实验分离。对于每种情况,我们测量 (i) 雪崩临界性,(ii) 混沌性,和 (iii) 与临界性相关的指标,结果表明无意识状态的特征是与雪崩临界性和混沌边缘的距离。然后,我们询问这些相同的动力学特性是否可以预测扰动复杂性指数 (PCI),这是一种基于 TMS 的测量方法,已被证明具有很高的敏感性,可以独立于行为检测意识。我们成功地仅从静息状态 EEG 动力学特性就非常准确地预测了个体受试者的 PCI 值。我们的结果在扰动复杂性和临界性之间建立了牢固的联系,并进一步证明临界性是意识出现的必要条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0ac/11300875/ddbeb7584133/42003_2024_6613_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验