Suppr超能文献

鉴定和验证胃癌癌前病变中与铁死亡相关的生物标志物及其相关发病机制。

Identification and validation of ferroptosis-related biomarkers and the related pathogenesis in precancerous lesions of gastric cancer.

机构信息

Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301608, China.

Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China.

出版信息

Sci Rep. 2023 Sep 26;13(1):16074. doi: 10.1038/s41598-023-43198-4.

Abstract

Using advanced bioinformatics techniques, we conducted an analysis of ferroptosis-related genes (FRGs) in precancerous lesions of gastric cancer (PLGC). We also investigated their connection to immune cell infiltration and diagnostic value, ultimately identifying new molecular targets that could be used for PLGC patient treatment. The Gene Expression Omnibus (GEO) and FerrDb V2 databases were used to identify FRGs. These genes were analysed via ClueGO pathways and Gene Ontology (GO) enrichment analysis, as well as single-cell dataset GSE134520 analysis. A machine learning model was applied to identify hub genes associated with ferroptosis in PLGC patients. Receiver Operating Characteristics (ROC) curve analysis was conducted to verify the diagnostic efficacy of these genes, and a PLGC diagnosis model nomogram was established based on hub genes. R software was utilized to conduct functional, pathway, gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) on the identified diagnostic genes. Hub gene expression levels and survival times in gastric cancer were analysed using online databases to determine the prognostic value of these genes. MCPcounter and single-sample gene set enrichment analysis (ssGSEA) algorithms were used to investigate the correlation between hub genes and immune cells. Finally, noncoding RNA regulatory mechanisms and transcription factor regulatory networks for hub genes were mapped using multiple databases. Eventually, we identified 23 ferroptosis-related genes in PLGC. Enrichment analyses showed that ferroptosis-related genes were closely associated with iron uptake and transport and ferroptosis in the development of PLGC. After differential analysis using machine learning algorithms, we identified four hub genes in PLGC patients, including MYB, CYB5R1, LIFR and DPP4. Consequently, we established a ferroptosis diagnosis model nomogram. GSVA and GSEA mutual verification analysis helped uncover potential regulatory mechanisms of hub genes. MCPcounter and ssGSEA analysed immune infiltration in the disease and indicated that B cells and parainflammation played an important role in disease progression. Finally, we constructed noncoding RNA regulatory networks and transcription factor regulatory networks. Our study identified ferroptosis-related diagnostic genes and therapeutic targets for PLGC, providing novel insights and a theoretical foundation for research into the molecular mechanisms, clinical diagnosis, and treatment of this disease.

摘要

使用先进的生物信息学技术,我们对胃癌前病变(PLGC)中的铁死亡相关基因(FRGs)进行了分析。我们还研究了它们与免疫细胞浸润的关系和诊断价值,最终确定了新的分子靶点,可用于 PLGC 患者的治疗。使用基因表达综合数据库(GEO)和 FerrDb V2 数据库鉴定 FRGs。通过 ClueGO 途径和基因本体论(GO)富集分析以及单细胞数据集 GSE134520 分析对这些基因进行分析。应用机器学习模型识别与 PLGC 患者铁死亡相关的枢纽基因。通过受试者工作特征(ROC)曲线分析验证这些基因的诊断效能,并基于枢纽基因建立 PLGC 诊断模型列线图。使用 R 软件对鉴定的诊断基因进行功能、通路、基因集富集分析(GSEA)和基因集变异分析(GSVA)。使用在线数据库分析胃腺癌中枢纽基因的表达水平和生存时间,以确定这些基因的预后价值。使用 MCPcounter 和单样本基因集富集分析(ssGSEA)算法研究枢纽基因与免疫细胞的相关性。最后,使用多个数据库绘制枢纽基因的非编码 RNA 调控机制和转录因子调控网络。最终,我们在 PLGC 中鉴定出 23 个铁死亡相关基因。富集分析表明,铁死亡相关基因与 PLGC 发生发展过程中的铁摄取和转运以及铁死亡密切相关。通过机器学习算法的差异分析,我们在 PLGC 患者中鉴定出四个枢纽基因,包括 MYB、CYB5R1、LIFR 和 DPP4。因此,我们建立了铁死亡诊断模型列线图。GSVA 和 GSEA 相互验证分析有助于揭示枢纽基因的潜在调控机制。MCPcounter 和 ssGSEA 分析表明,疾病中的 B 细胞和类炎症发挥了重要作用。最后,我们构建了非编码 RNA 调控网络和转录因子调控网络。我们的研究鉴定了 PLGC 的铁死亡相关诊断基因和治疗靶点,为该疾病的分子机制、临床诊断和治疗研究提供了新的见解和理论基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b728/10522668/73d422af4058/41598_2023_43198_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验