Suppr超能文献

(光氧化还原)生命起源中的有机催化:发现、应用与分子进化

(Photoredox) Organocatalysis in the Emergence of Life: Discovery, Applications, and Molecular Evolution.

作者信息

Bechtel Maximilian, Ebeling Marian, Huber Laura, Trapp Oliver

机构信息

Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany.

出版信息

Acc Chem Res. 2023 Oct 17;56(20):2801-2813. doi: 10.1021/acs.accounts.3c00396. Epub 2023 Sep 26.

Abstract

ConspectusLife as we know it is built on complex and perfectly interlocking processes that have evolved over millions of years through evolutionary optimization processes. The emergence of life from nonliving matter and the evolution of such highly efficient systems therefore constitute an enormous synthetic and systems chemistry challenge. Advances in supramolecular and systems chemistry are opening new perspectives that provide insights into living and self-sustaining reaction networks as precursors for life. However, the ab initio synthesis of such a system requires the possibility of autonomous optimization of catalytic properties and, consequently, of an evolutionary system at the molecular level. In this Account, we present our discovery of the formation of substituted imidazolidine-4-thiones (photoredox) organocatalysts from simple prebiotic building blocks such as aldehydes and ketones under Strecker reaction conditions with ammonia and cyanides in the presence of hydrogen sulfide. The necessary aldehydes are formed from CO and hydrogen under prebiotically plausible meteoritic or volcanic iron-particle catalysis in the atmosphere of the early Earth. Remarkably, the investigated imidazolidine-4-thiones undergo spontaneous resolution by conglomerate crystallization, opening a pathway for symmetry breaking, chiral amplification, and enantioselective organocatalysis. These imidazolidine-4-thiones enable α-alkylations of aldehydes and ketones by photoredox organocatalysis. Therefore, these photoredox organocatalysts are able to modify their aldehyde building blocks, which leads in an evolutionary process to mutated second-generation and third-generation catalysts. In our experimental studies, we found that this mutation can occur not only by new formation of the imidazolidine core structure of the catalyst from modified aldehyde building blocks or by continuous supply from a pool of available building blocks but also by a dynamic exchange of the carbonyl moiety in ring position 2 of the imidazolidine moiety. Remarkably, it can be shown that by incorporating aldehyde building blocks from their environment, the imidazolidine-4-thiones are able to change and adapt to altering environmental conditions without undergoing the entire formation process. The selection of the mutated catalysts is then based on the different catalytic activities in the modification of the aldehyde building blocks and on the catalysis of subsequent processes that can lead to the formation of molecular reaction networks as progenitors for cellular processes. We were able to show that these imidazolidine-4-thiones not only enable α-alkylations but also facilitate other important transformations, such as the selective phosphorylation of nucleosides to nucleotides as a key step leading to the oligomerization to RNA and DNA. It can therefore be expected that evolutionary processes have already taken place on a small molecular level and have thus developed chemical tools that change over time, representing a hidden layer on the path to enzymatically catalyzed biochemical processes.

摘要

综述

我们所知的生命是建立在复杂且完美相互关联的过程之上,这些过程通过数百万年的进化优化过程而演变。因此,从非生命物质中产生生命以及如此高效的系统的进化构成了巨大的合成化学和系统化学挑战。超分子化学和系统化学的进展正在开辟新的视角,为作为生命前体的有生命和自我维持的反应网络提供见解。然而,这种系统的从头合成需要在分子水平上实现催化性能的自主优化,进而实现进化系统。在本综述中,我们展示了在早期地球大气中,在硫化氢存在下,在斯特雷克反应条件下,由醛和酮等简单的益生元构建块与氨和氰化物反应形成取代咪唑烷 - 4 - 硫酮(光氧化还原)有机催化剂的发现。必要的醛是在早期地球大气中,在益生元似是而非的陨石或火山铁颗粒催化下,由一氧化碳和氢气形成的。值得注意的是,所研究的咪唑烷 - 4 - 硫酮通过聚集体结晶进行自发拆分,为对称性破缺、手性放大和对映选择性有机催化开辟了一条途径。这些咪唑烷 - 4 - 硫酮能够通过光氧化还原有机催化实现醛和酮的α - 烷基化。因此,这些光氧化还原有机催化剂能够修饰其醛构建块,这在一个进化过程中导致了第二代和第三代突变催化剂的产生。在我们的实验研究中,我们发现这种突变不仅可以通过由修饰的醛构建块重新形成催化剂的咪唑烷核心结构,或者通过从可用构建块库中持续供应来发生,还可以通过咪唑烷部分环位置2上羰基部分的动态交换来发生。值得注意的是,可以表明通过从其环境中纳入醛构建块,咪唑烷 - 4 - 硫酮能够改变并适应不断变化的环境条件,而无需经历整个形成过程。然后,对突变催化剂的选择基于醛构建块修饰中的不同催化活性以及随后可能导致形成作为细胞过程祖细胞的分子反应网络的过程的催化作用。我们能够表明这些咪唑烷 - 4 - 硫酮不仅能够实现α - 烷基化,还能促进其他重要的转化,例如核苷选择性磷酸化为核苷酸,这是导致寡聚形成RNA和DNA的关键步骤。因此,可以预期进化过程已经在小分子水平上发生,从而开发出随时间变化的化学工具,这代表了通向酶催化生化过程道路上的一个隐藏层面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验