Suppr超能文献

基于集成多阵列柔性触觉传感器的护理辅助设备,利用图卷积网络-长短期记忆多任务学习的老年人跌倒检测

Elderly Fall Detection Based on GCN-LSTM Multi-Task Learning Using Nursing Aids Integrated with Multi-Array Flexible Tactile Sensors.

作者信息

Li Tong, Yan Yuhang, Yin Minghui, An Jing, Chen Gang, Wang Yifan, Liu Chunxiu, Xue Ning

机构信息

School of Modern Post (School of Automation), Beijing University of Posts and Telecommunications, Beijing 100876, China.

State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Biosensors (Basel). 2023 Aug 31;13(9):862. doi: 10.3390/bios13090862.

Abstract

Due to the frailty of elderly individuals' physical condition, falling can lead to severe bodily injuries. Effective fall detection can significantly reduce the occurrence of such incidents. However, current fall detection methods heavily rely on visual and multi-sensor devices, which incur higher costs and complex wearable designs, limiting their wide-ranging applicability. In this paper, we propose a fall detection method based on nursing aids integrated with multi-array flexible tactile sensors. We design a kind of multi-array capacitive tactile sensor and arrange the distribution of tactile sensors on the foot based on plantar force analysis and measure tactile sequences from the sole of the foot to develop a dataset. Then we construct a fall detection model based on a graph convolution neural network and long-short term memory network (GCN-LSTM), where the GCN module and LSTM module separately extract spatial and temporal features from the tactile sequences, achieving detection on tactile data of foot and walking states for specific time series in the future. Experiments are carried out with the fall detection model, the Mean Squared Error (MSE) of the predicted tactile data of the foot at the next time step is 0.0716, with the fall detection accuracy of 96.36%. What is more, the model can achieve fall detection on 5-time steps with 0.2-s intervals in the future with high confidence results. It exhibits outstanding performance, surpassing other baseline algorithms. Besides, we conduct experiments on different ground types and ground morphologies for fall detection, and the model showcases robust generalization capabilities.

摘要

由于老年人身体状况较为虚弱,跌倒可能导致严重的身体损伤。有效的跌倒检测可以显著减少此类事件的发生。然而,当前的跌倒检测方法严重依赖视觉和多传感器设备,这些设备成本较高且可穿戴设计复杂,限制了它们的广泛应用。在本文中,我们提出了一种基于集成多阵列柔性触觉传感器的护理辅助器具的跌倒检测方法。我们设计了一种多阵列电容式触觉传感器,并基于足底力分析在足部布置触觉传感器的分布,从脚底测量触觉序列以开发数据集。然后我们构建了一个基于图卷积神经网络和长短期记忆网络(GCN-LSTM)的跌倒检测模型,其中GCN模块和LSTM模块分别从触觉序列中提取空间和时间特征,实现对未来特定时间序列的足部触觉数据和行走状态的检测。使用该跌倒检测模型进行实验,下一个时间步预测的足部触觉数据的均方误差(MSE)为0.0716,跌倒检测准确率为96.36%。此外,该模型能够以高置信度结果在未来以0.2秒的间隔对5个时间步进行跌倒检测。它表现出卓越的性能,超过了其他基线算法。此外,我们针对不同地面类型和地面形态进行了跌倒检测实验,该模型展示了强大的泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e34/10526290/652869d9b80f/biosensors-13-00862-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验