Suppr超能文献

基于时空图卷积网络的红外视频跌倒检测方法。

Fall Detection Method for Infrared Videos Based on Spatial-Temporal Graph Convolutional Network.

机构信息

MOE Key Laboratory of Optoelectronic Imaging Technology and System, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Sensors (Basel). 2024 Jul 17;24(14):4647. doi: 10.3390/s24144647.

Abstract

The timely detection of falls and alerting medical aid is critical for health monitoring in elderly individuals living alone. This paper mainly focuses on issues such as poor adaptability, privacy infringement, and low recognition accuracy associated with traditional visual sensor-based fall detection. We propose an infrared video-based fall detection method utilizing spatial-temporal graph convolutional networks (ST-GCNs) to address these challenges. Our method used fine-tuned AlphaPose to extract 2D human skeleton sequences from infrared videos. Subsequently, the skeleton data was represented in Cartesian and polar coordinates and processed through a two-stream ST-GCN to recognize fall behaviors promptly. To enhance the network's recognition capability for fall actions, we improved the adjacency matrix of graph convolutional units and introduced multi-scale temporal graph convolution units. To facilitate practical deployment, we optimized time window and network depth of the ST-GCN, striking a balance between model accuracy and speed. The experimental results on a proprietary infrared human action recognition dataset demonstrated that our proposed algorithm accurately identifies fall behaviors with the highest accuracy of 96%. Moreover, our algorithm performed robustly, identifying falls in both near-infrared and thermal-infrared videos.

摘要

对于独居老年人的健康监测来说,及时检测跌倒并发出医疗援助至关重要。本文主要关注传统基于视觉传感器的跌倒检测中存在的适应性差、侵犯隐私和识别准确率低等问题。我们提出了一种基于红外视频的跌倒检测方法,利用时空图卷积网络(ST-GCN)来解决这些挑战。我们的方法使用经过微调的 AlphaPose 从红外视频中提取 2D 人体骨骼序列。然后,将骨骼数据表示为笛卡尔和极坐标,并通过双流 ST-GCN 进行处理,以快速识别跌倒行为。为了增强网络对跌倒动作的识别能力,我们改进了图卷积单元的邻接矩阵,并引入了多尺度时间图卷积单元。为了便于实际部署,我们优化了 ST-GCN 的时间窗口和网络深度,在模型准确性和速度之间取得了平衡。在专有的红外人体动作识别数据集上的实验结果表明,我们提出的算法能够准确识别跌倒行为,准确率高达 96%。此外,我们的算法在近红外和热红外视频中都能稳健地识别跌倒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验