Xia Fei, Yang Ming, Zhang Mengjian, Zhang Jing
Electrical Engineering College, Guizhou University, Guiyang 550025, China.
School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China.
Biomimetics (Basel). 2023 Aug 26;8(5):393. doi: 10.3390/biomimetics8050393.
Existing swarm intelligence (SI) optimization algorithms applied to node localization optimization (NLO) and node coverage optimization (NCO) problems have low accuracy. In this study, a novel balanced butterfly optimizer (BBO) is proposed which comprehensively considers that butterflies in nature have both smell-sensitive and light-sensitive characteristics. These smell-sensitive and light-sensitive characteristics are used for the global and local search strategies of the proposed algorithm, respectively. Notably, the value of individuals' smell-sensitive characteristic is generally positive, which is a point that cannot be ignored. The performance of the proposed BBO is verified by twenty-three benchmark functions and compared to other state-of-the-art (SOTA) SI algorithms, including particle swarm optimization (PSO), differential evolution (DE), grey wolf optimizer (GWO), artificial butterfly optimization (ABO), butterfly optimization algorithm (BOA), Harris hawk optimization (HHO), and aquila optimizer (AO). The results demonstrate that the proposed BBO has better performance with the global search ability and strong stability. In addition, the BBO algorithm is used to address NLO and NCO problems in wireless sensor networks (WSNs) used in environmental monitoring, obtaining good results.
现有的应用于节点定位优化(NLO)和节点覆盖优化(NCO)问题的群体智能(SI)优化算法精度较低。在本研究中,提出了一种新颖的平衡蝴蝶优化器(BBO),该优化器综合考虑了自然界中的蝴蝶同时具有嗅觉敏感和视觉敏感的特性。这些嗅觉敏感和视觉敏感特性分别用于所提算法的全局和局部搜索策略。值得注意的是,个体嗅觉敏感特性的值通常为正,这是一个不可忽视的点。通过二十三个基准函数验证了所提BBO的性能,并与其他先进的(SOTA)SI算法进行了比较,包括粒子群优化(PSO)、差分进化(DE)、灰狼优化器(GWO)、人工蝴蝶优化(ABO)、蝴蝶优化算法(BOA)、哈里斯鹰优化(HHO)和天鹰座优化器(AO)。结果表明,所提BBO具有更好的性能,具备全局搜索能力和较强的稳定性。此外,将BBO算法用于解决环境监测中无线传感器网络(WSN)的NLO和NCO问题,取得了良好的效果。