Suppr超能文献

使用人工神经网络和响应面法对鲑鱼明胶凝胶进行三维打印参数优化:对物理化学和消化特性的影响。

Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties.

作者信息

Carvajal-Mena Nailín, Tabilo-Munizaga Gipsy, Saldaña Marleny D A, Pérez-Won Mario, Herrera-Lavados Carolina, Lemus-Mondaca Roberto, Moreno-Osorio Luis

机构信息

Department of Food Engineering, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3780000, Chile.

Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.

出版信息

Gels. 2023 Sep 20;9(9):766. doi: 10.3390/gels9090766.

Abstract

This study aimed to optimize the 3D printing parameters of salmon gelatin gels (SGG) using artificial neural networks with the genetic algorithm (ANN-GA) and response surface methodology (RSM). In addition, the influence of the optimal parameters obtained using the two different methodologies was evaluated for the physicochemical and digestibility properties of the printed SGG (PSGG). The ANN-GA had a better fit (R = 99.98%) with the experimental conditions of the 3D printing process than the RSM (R = 93.99%). The extrusion speed was the most influential parameter according to both methodologies. The optimal values of the printing parameters for the SGG were 0.70 mm for the nozzle diameter, 0.5 mm for the nozzle height, and 24 mm/s for the extrusion speed. Gel thermal properties showed that the optimal 3D printing conditions affected denaturation temperature and enthalpy, improving digestibility from 46.93% (SGG) to 51.52% (PSGG). The secondary gel structures showed that the β-turn structure was the most resistant to enzymatic hydrolysis, while the intermolecular β-sheet was the most labile. This study validated two optimization methodologies to achieve optimal 3D printing parameters of salmon gelatin gels, with improved physicochemical and digestibility properties for use as transporters to incorporate high value nutrients to the body.

摘要

本研究旨在利用带有遗传算法的人工神经网络(ANN-GA)和响应面法(RSM)优化鲑鱼明胶凝胶(SGG)的3D打印参数。此外,针对打印的SGG(PSGG)的物理化学性质和消化率特性,评估了使用两种不同方法获得的最佳参数的影响。与RSM(R = 93.99%)相比,ANN-GA与3D打印过程的实验条件拟合度更好(R = 99.98%)。根据这两种方法,挤出速度是最具影响力的参数。SGG打印参数的最佳值为喷嘴直径0.70毫米、喷嘴高度0.5毫米和挤出速度24毫米/秒。凝胶热性能表明,最佳3D打印条件影响变性温度和焓,将消化率从46.93%(SGG)提高到51.52%(PSGG)。二级凝胶结构表明,β-转角结构最耐酶水解,而分子间β-折叠最不稳定。本研究验证了两种优化方法,以实现鲑鱼明胶凝胶的最佳3D打印参数,其物理化学性质和消化率特性得到改善,可用作将高价值营养物质输送到体内的载体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10530252/9d1bdf8a05ce/gels-09-00766-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验