Suppr超能文献

复杂骨科手术的自动三维术后评估

Automatic 3D Postoperative Evaluation of Complex Orthopaedic Interventions.

作者信息

Ackermann Joëlle, Hoch Armando, Snedeker Jess Gerrit, Zingg Patrick Oliver, Esfandiari Hooman, Fürnstahl Philipp

机构信息

Research in Orthopedic Computer Science, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland.

Laboratory for Orthopaedic Biomechanics, ETH Zurich, 8093 Zurich, Switzerland.

出版信息

J Imaging. 2023 Aug 31;9(9):180. doi: 10.3390/jimaging9090180.

Abstract

In clinical practice, image-based postoperative evaluation is still performed without state-of-the-art computer methods, as these are not sufficiently automated. In this study we propose a fully automatic 3D postoperative outcome quantification method for the relevant steps of orthopaedic interventions on the example of Periacetabular Osteotomy of Ganz (PAO). A typical orthopaedic intervention involves cutting bone, anatomy manipulation and repositioning as well as implant placement. Our method includes a segmentation based deep learning approach for detection and quantification of the cuts. Furthermore, anatomy repositioning was quantified through a multi-step registration method, which entailed a coarse alignment of the pre- and postoperative CT images followed by a fine fragment alignment of the repositioned anatomy. Implant (i.e., screw) position was identified by 3D Hough transform for line detection combined with fast voxel traversal based on ray tracing. The feasibility of our approach was investigated on 27 interventions and compared against manually performed 3D outcome evaluations. The results show that our method can accurately assess the quality and accuracy of the surgery. Our evaluation of the fragment repositioning showed a cumulative error for the coarse and fine alignment of 2.1 mm. Our evaluation of screw placement accuracy resulted in a distance error of 1.32 mm for screw head location and an angular deviation of 1.1° for screw axis. As a next step we will explore generalisation capabilities by applying the method to different interventions.

摘要

在临床实践中,基于图像的术后评估仍然没有采用最先进的计算机方法来进行,因为这些方法的自动化程度还不够高。在本研究中,我们以甘茨髋臼周围截骨术(PAO)为例,针对骨科手术的相关步骤提出了一种全自动的三维术后结果量化方法。典型的骨科手术包括切割骨头、解剖结构的操作与重新定位以及植入物的放置。我们的方法包括一种基于分割的深度学习方法,用于检测和量化切口。此外,通过一种多步骤配准方法对解剖结构的重新定位进行量化,该方法包括术前和术后CT图像的粗略对齐,随后是重新定位后的解剖结构的精细碎片对齐。植入物(即螺钉)的位置通过用于线检测的三维霍夫变换结合基于光线追踪的快速体素遍历来确定。我们在27例手术中研究了该方法的可行性,并与手动进行的三维结果评估进行了比较。结果表明,我们的方法能够准确评估手术的质量和准确性。我们对碎片重新定位的评估显示,粗略和精细对齐的累积误差为2.1毫米。我们对螺钉放置准确性的评估结果是,螺钉头部位置的距离误差为1.32毫米,螺钉轴的角度偏差为1.1°。下一步,我们将通过将该方法应用于不同的手术来探索其泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3b0/10532700/a33ea587cc24/jimaging-09-00180-g008.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验