Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.
Technology Platform Next Generation Sequencing, Leibniz Institute of Virology, Martinistraße 52, 20251, Hamburg, Germany.
Appl Microbiol Biotechnol. 2023 Dec;107(23):7119-7134. doi: 10.1007/s00253-023-12781-0. Epub 2023 Sep 27.
Many marine organisms produce bioactive molecules with unique characteristics to survive in their ecological niches. These enzymes can be applied in biotechnological processes and in the medical sector to replace aggressive chemicals that are harmful to the environment. Especially in the human health sector, there is a need for new approaches to fight against pathogens like Stenotrophomonas maltophilia which forms thick biofilms on artificial joints or catheters and causes serious diseases. Our approach was to use enrichment cultures of five marine resources that underwent sequence-based screenings in combination with deep omics analyses in order to identify enzymes with antibiofilm characteristics. Especially the supernatant of the enrichment culture of a stony coral caused a 40% reduction of S. maltophilia biofilm formation. In the presence of the supernatant, our transcriptome dataset showed a clear stress response (upregulation of transcripts for metal resistance, antitoxins, transporter, and iron acquisition) to the treatment. Further investigation of the enrichment culture metagenome and proteome indicated a series of potential antimicrobial enzymes. We found an impressive group of metalloproteases in the proteome of the supernatant that is responsible for the detected anti-biofilm effect against S. maltophilia. KEY POINTS: • Omics-based discovery of novel marine-derived antimicrobials for human health management by inhibition of S. maltophilia • Up to 40% reduction of S. maltophilia biofilm formation by the use of marine-derived samples • Metalloprotease candidates prevent biofilm formation of S. maltophilia K279a by up to 20.
许多海洋生物为了在其生态位中生存而产生具有独特特性的生物活性分子。这些酶可应用于生物技术过程和医疗领域,以替代对环境有害的腐蚀性化学品。特别是在人类健康领域,需要新的方法来对抗像嗜麦芽寡养单胞菌这样的病原体,它在人工关节或导管上形成厚厚的生物膜,导致严重的疾病。我们的方法是使用 5 种海洋资源的富集培养物进行基于序列的筛选,并结合深度组学分析,以鉴定具有抗生物膜特性的酶。特别是一种石珊瑚的富集培养物的上清液可使嗜麦芽寡养单胞菌生物膜形成减少 40%。在存在上清液的情况下,我们的转录组数据集显示出对处理的明显应激反应(金属抗性、解毒剂、转运蛋白和铁摄取的转录物上调)。对富集培养物宏基因组和蛋白质组的进一步研究表明了一系列潜在的抗菌酶。我们在该上清液的蛋白质组中发现了一组令人印象深刻的金属蛋白酶,它负责检测到对嗜麦芽寡养单胞菌的抗生物膜作用。关键点: • 通过抑制嗜麦芽寡养单胞菌,从海洋衍生样本中发现用于人类健康管理的新型海洋来源的抗菌药物 • 使用海洋衍生样本可将嗜麦芽寡养单胞菌 K279a 的生物膜形成减少高达 40% • 金属蛋白酶候选物可将嗜麦芽寡养单胞菌 K279a 的生物膜形成减少多达 20%