Suppr超能文献

用于存储器和神经形态计算系统的多孔晶体材料。

Porous crystalline materials for memories and neuromorphic computing systems.

作者信息

Ding Guanglong, Zhao JiYu, Zhou Kui, Zheng Qi, Han Su-Ting, Peng Xiaojun, Zhou Ye

机构信息

Institute for Advanced Study, Shenzhen University, Shenzhen, China.

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.

出版信息

Chem Soc Rev. 2023 Oct 16;52(20):7071-7136. doi: 10.1039/d3cs00259d.

Abstract

Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (, materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.

摘要

多孔晶体材料通常包括金属有机框架(MOF)、共价有机框架(COF)、氢键有机框架(HOF)和沸石,这些材料具有出色的孔隙率以及结构/组成可设计性,在过去十年中受到了记忆和神经形态计算系统越来越多的关注。从材料和器件的角度来看,全面且及时地总结多孔晶体材料在记忆和神经形态计算系统中的应用对于指导未来的研究工作至关重要。此外,多孔晶体材料在电子领域的应用需要从粉末合成转向高质量薄膜制备,以确保器件具有高性能。本综述重点介绍了制备多孔晶体材料薄膜的策略,并讨论了它们在记忆和神经形态电子学方面的进展。它还提供了详细的比较分析,并提出了现有挑战和未来的研究方向,旨在吸引各个领域(材料科学家、化学家和工程师)的专家,以促进多孔晶体材料在记忆和神经形态计算系统中的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验