School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, Anhui 230009, China.
Brief Bioinform. 2023 Sep 22;24(6). doi: 10.1093/bib/bbad329.
The prediction of prognostic outcome is critical for the development of efficient cancer therapeutics and potential personalized medicine. However, due to the heterogeneity and diversity of multimodal data of cancer, data integration and feature selection remain a challenge for prognostic outcome prediction. We proposed a deep learning method with generative adversarial network based on sequential channel-spatial attention modules (CSAM-GAN), a multimodal data integration and feature selection approach, for accomplishing prognostic stratification tasks in cancer. Sequential channel-spatial attention modules equipped with an encoder-decoder are applied for the input features of multimodal data to accurately refine selected features. A discriminator network was proposed to make the generator and discriminator learning in an adversarial way to accurately describe the complex heterogeneous information of multiple modal data. We conducted extensive experiments with various feature selection and classification methods and confirmed that the CSAM-GAN via the multilayer deep neural network (DNN) classifier outperformed these baseline methods on two different multimodal data sets with miRNA expression, mRNA expression and histopathological image data: lower-grade glioma and kidney renal clear cell carcinoma. The CSAM-GAN via the multilayer DNN classifier bridges the gap between heterogenous multimodal data and prognostic outcome prediction.
预后结果的预测对于开发有效的癌症治疗方法和潜在的个性化医疗至关重要。然而,由于癌症的多模态数据具有异质性和多样性,因此数据集成和特征选择仍然是预后结果预测的一个挑战。我们提出了一种基于序贯通道-空间注意模块(CSAM-GAN)的生成对抗网络的深度学习方法,这是一种多模态数据集成和特征选择方法,用于完成癌症的预后分层任务。序贯通道-空间注意模块配备了编码器-解码器,用于对多模态数据的输入特征进行精确选择。提出了一个判别器网络,使生成器和判别器以对抗的方式进行学习,从而准确地描述多模态数据的复杂异质信息。我们使用各种特征选择和分类方法进行了广泛的实验,并证实了 CSAM-GAN 通过多层深度神经网络(DNN)分类器在两个不同的多模态数据集上优于这些基线方法,这些数据集具有 miRNA 表达、mRNA 表达和组织病理学图像数据:低级别神经胶质瘤和肾透明细胞癌。CSAM-GAN 通过多层 DNN 分类器弥合了异质多模态数据和预后结果预测之间的差距。