Servicio de Radiología, Hospital Universitario Ramón y Cajal, Madrid, Spain.
Servicio de Radiología de Urgencias, Hospital Universitario Ramón y Cajal, Madrid, Centro de Investigación Biomédica en Red Enfermedades respiratorias (CIBERES), Madrid, Spain.
Radiologia (Engl Ed). 2023 Sep-Oct;65(5):423-430. doi: 10.1016/j.rxeng.2022.03.007.
Acute aortic syndrome (AAS) is uncommon and difficult to diagnose, with great variability in clinical presentation. To develop a computerized algorithm, or clinical decision support system (CDSS), for managing and requesting imaging in the emergency department, specifically computerized tomography of the aorta (CTA), when there is suspicion of AAS, and to determine the effect of implementing this system. To determine the factors associated with a positive radiological diagnosis that improve the predictive capacity of CTA findings.
After developing and implementing an evidence-based algorithm, we studied suspected cases of AAS. Chi-squared test was used to analyze the association between the variables included in the algorithm and radiological diagnosis, with 3 categories: no relevant findings, positive for AAS, and alternative diagnoses.
130 requests were identified; 19 (14.6%) had AAS and 34 (26.2%) had a different acute pathology. Of the 19 with AAS, 15 had been stratified as high risk and 4 as intermediate risk. The probability of AAS was 3.4 times higher in patients with known aortic aneurysm (P = .021, 95% CI 1.2-9.6) and 5.1 times higher in patients with a new aortic regurgitation murmur (P = .019, 95% CI 1.3-20.1). The probability of having an alternative severe acute pathology was 3.2 times higher in patients with hypotension or shock (P = .02, 95% CI 1.2-8.5).
The use of a CDSS in the emergency department can help optimize AAS diagnosis. The presence of a known aortic aneurysm and new-onset aortic regurgitation were shown to significantly increase the probability of AAS. Further studies are needed to establish a clinical prediction rule.
急性主动脉综合征(AAS)罕见且难以诊断,临床表现差异较大。本研究旨在开发一种计算机算法或临床决策支持系统(CDSS),以便在急诊科对疑似 AAS 患者进行管理和进行主动脉计算机断层扫描(CTA)检查,并确定该系统实施的效果。本研究还旨在确定与放射学诊断阳性相关的因素,以提高 CTA 检查结果的预测能力。
在开发并实施了基于证据的算法后,我们对疑似 AAS 患者进行了研究。采用卡方检验分析了纳入算法的变量与放射学诊断之间的关系,分为 3 类:无相关发现、AAS 阳性和其他诊断。
共确定了 130 例申请,其中 19 例(14.6%)患有 AAS,34 例(26.2%)患有其他急性疾病。在 19 例 AAS 患者中,15 例为高危,4 例为中危。已知主动脉瘤患者发生 AAS 的概率是 3.4 倍(P=0.021,95%CI 1.2-9.6),新发主动脉瓣反流杂音患者发生 AAS 的概率是 5.1 倍(P=0.019,95%CI 1.3-20.1)。低血压或休克患者发生其他严重急性疾病的概率是 3.2 倍(P=0.02,95%CI 1.2-8.5)。
在急诊科使用 CDSS 有助于优化 AAS 诊断。已知主动脉瘤和新发主动脉瓣反流显著增加了 AAS 的发生概率。需要进一步的研究来建立临床预测规则。