Suppr超能文献

当代方法预测冠状动脉介入治疗后的急性肾损伤。

Contemporary Methods for Predicting Acute Kidney Injury After Coronary Intervention.

机构信息

Cardiovascular Outcomes, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA; University of Missouri Kansas City, Kansas City, Missouri, USA.

Cardiovascular Outcomes, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA; University of Missouri Kansas City, Kansas City, Missouri, USA.

出版信息

JACC Cardiovasc Interv. 2023 Sep 25;16(18):2294-2305. doi: 10.1016/j.jcin.2023.07.041.

Abstract

BACKGROUND

Acute kidney injury (AKI) is the most common complication after percutaneous coronary intervention (PCI). Accurately estimating patients' risks not only creates a means of benchmarking performance but can also be used prospectively to inform practice.

OBJECTIVES

The authors sought to update the 2014 National Cardiovascular Data Registry (NCDR) AKI risk model to provide contemporary estimates of AKI risk after PCI to further improve care.

METHODS

Using the NCDR CathPCI Registry, we identified all 2020 PCIs, excluding those on dialysis or lacking postprocedural creatinine. The cohort was randomly split into a 70% derivation cohort and a 30% validation cohort, and logistic regression models were built to predict AKI (an absolute increase of 0.3 mg/dL in creatinine or a 50% increase from preprocedure baseline) and AKI requiring dialysis. Bedside risk scores were created to facilitate prospective use in clinical care, along with threshold contrast doses to reduce AKI. We tested model calibration and discrimination in the validation cohort.

RESULTS

Among 455,806 PCI procedures, the median age was 67 years (IQR: 58.0-75.0 years), 68.8% were men, and 86.8% were White. The incidence of AKI and new dialysis was 7.2% and 0.7%, respectively. Baseline renal function and variables associated with clinical instability were the strongest predictors of AKI. The final AKI model included 13 variables, with a C-statistic of 0.798 and excellent calibration (intercept = -0.03 and slope = 0.97) in the validation cohort.

CONCLUSIONS

The updated NCDR AKI risk model further refines AKI prediction after PCI, facilitating enhanced clinical care, benchmarking, and quality improvement.

摘要

背景

急性肾损伤(AKI)是经皮冠状动脉介入治疗(PCI)后最常见的并发症。准确评估患者的风险不仅可以提供绩效基准,还可以前瞻性地用于指导实践。

目的

作者旨在更新 2014 年全国心血管数据注册(NCDR)AKI 风险模型,以提供 PCI 后 AKI 风险的当代估计值,从而进一步改善治疗效果。

方法

我们利用 NCDR CathPCI 注册中心,确定了所有 2020 例 PCI,不包括透析或术后肌酐缺乏的患者。该队列被随机分为 70%的推导队列和 30%的验证队列,并构建逻辑回归模型来预测 AKI(肌酐绝对增加 0.3mg/dL 或较术前基线增加 50%)和需要透析的 AKI。创建床边风险评分以促进在临床护理中的前瞻性使用,并确定降低 AKI 的阈值对比剂量。我们在验证队列中测试了模型校准和区分度。

结果

在 455806 例 PCI 手术中,中位年龄为 67 岁(IQR:58.0-75.0 岁),68.8%为男性,86.8%为白人。AKI 和新透析的发生率分别为 7.2%和 0.7%。基线肾功能和与临床不稳定相关的变量是 AKI 的最强预测因素。最终的 AKI 模型包含 13 个变量,在验证队列中的 C 统计量为 0.798,且校准效果极好(截距=-0.03,斜率=0.97)。

结论

更新的 NCDR AKI 风险模型进一步细化了 PCI 后的 AKI 预测,有助于加强临床护理、基准测试和质量改进。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验