Suppr超能文献

甲状腺结节超声评估的可学习性:使用大数据集。

Learnability of Thyroid Nodule Assessment on Ultrasonography: Using a Big Data Set.

机构信息

Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea.

School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, Seoul, Korea.

出版信息

Ultrasound Med Biol. 2023 Dec;49(12):2581-2589. doi: 10.1016/j.ultrasmedbio.2023.08.026. Epub 2023 Sep 26.

Abstract

OBJECTIVE

The aims of the work described here were to evaluate the learnability of thyroid nodule assessment on ultrasonography (US) using a big data set of US images and to evaluate the diagnostic utilities of artificial intelligence computer-aided diagnosis (AI-CAD) used by readers with varying experience to differentiate benign and malignant thyroid nodules.

METHODS

Six college freshmen independently studied the "learning set" composed of images of 13,560 thyroid nodules, and their diagnostic performance was evaluated after their daily learning sessions using the "test set" composed of images of 282 thyroid nodules. The diagnostic performance of two residents and an experienced radiologist was evaluated using the same "test set." After an initial diagnosis, all readers once again evaluated the "test set" with the assistance of AI-CAD.

RESULTS

Diagnostic performance of almost all students increased after the learning program. Although the mean areas under the receiver operating characteristic curves (AUROCs) of residents and the experienced radiologist were significantly higher than those of students, the AUROCs of five of the six students did not differ significantly compared with that of the one resident. With the assistance of AI-CAD, sensitivity significantly increased in three students, specificity in one student, accuracy in four students and AUROC in four students. Diagnostic performance of the two residents and the experienced radiologist was better with the assistance of AI-CAD.

CONCLUSION

A self-learning method using a big data set of US images has potential as an ancillary tool alongside traditional training methods. With the assistance of AI-CAD, the diagnostic performance of readers with varying experience in thyroid imaging could be further improved.

摘要

目的

本研究旨在评估基于大数据超声图像数据集评估甲状腺结节的可学习性,并评估不同经验水平的读者使用人工智能计算机辅助诊断(AI-CAD)对甲状腺良恶性结节进行区分的诊断效能。

方法

六名大学新生独立学习由 13560 个甲状腺结节图像组成的“学习集”,并在每天的学习后使用由 282 个甲状腺结节图像组成的“测试集”评估他们的诊断性能。两名住院医师和一名经验丰富的放射科医生使用相同的“测试集”评估诊断性能。初始诊断后,所有读者均在 AI-CAD 的辅助下再次评估“测试集”。

结果

学习计划后,几乎所有学生的诊断性能均有所提高。尽管住院医师和经验丰富的放射科医生的平均受试者工作特征曲线(AUROC)显著高于学生,但其中 5 名学生的 AUROC 与 1 名住院医师无显著差异。在 AI-CAD 的辅助下,有 3 名学生的敏感性显著提高,1 名学生的特异性提高,4 名学生的准确性提高,4 名学生的 AUROC 提高。AI-CAD 辅助后,两名住院医师和一名经验丰富的放射科医生的诊断性能更好。

结论

基于大数据超声图像数据集的自学方法可能是传统培训方法的辅助工具。在 AI-CAD 的辅助下,不同经验水平的甲状腺成像读者的诊断性能可以进一步提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验