Suppr超能文献

通过数字自学和人工智能辅助提高经验不足的读者对甲状腺结节的诊断能力。

Improving the diagnostic performance of inexperienced readers for thyroid nodules through digital self-learning and artificial intelligence assistance.

作者信息

Lee Si Eun, Kim Hye Jung, Jung Hae Kyoung, Jung Jing Hyang, Jeon Jae-Han, Lee Jin Hee, Hong Hanpyo, Lee Eun Jung, Kim Daham, Kwak Jin Young

机构信息

Department of Radiology, Yongin Severance Hospital, College of Medicine, Yonsei University, Yongin-si, Republic of Korea.

Department of Radiology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea.

出版信息

Front Endocrinol (Lausanne). 2024 Jul 2;15:1372397. doi: 10.3389/fendo.2024.1372397. eCollection 2024.

Abstract

BACKGROUND

Data-driven digital learning could improve the diagnostic performance of novice students for thyroid nodules.

OBJECTIVE

To evaluate the efficacy of digital self-learning and artificial intelligence-based computer-assisted diagnosis (AI-CAD) for inexperienced readers to diagnose thyroid nodules.

METHODS

Between February and August 2023, a total of 26 readers (less than 1 year of experience in thyroid US from various departments) from 6 hospitals participated in this study. Readers completed an online learning session comprising 3,000 thyroid nodules annotated as benign or malignant independently. They were asked to assess a test set consisting of 120 thyroid nodules with known surgical pathology before and after a learning session. Then, they referred to AI-CAD and made their final decisions on the thyroid nodules. Diagnostic performances before and after self-training and with AI-CAD assistance were evaluated and compared between radiology residents and readers from different specialties.

RESULTS

AUC (area under the receiver operating characteristic curve) improved after the self-learning session, and it improved further after radiologists referred to AI-CAD (0.679 vs 0.713 vs 0.758, p<0.05). Although the 18 radiology residents showed improved AUC (0.7 to 0.743, p=0.016) and accuracy (69.9% to 74.2%, p=0.013) after self-learning, the readers from other departments did not. With AI-CAD assistance, sensitivity (radiology 70.3% to 74.9%, others 67.9% to 82.3%, all p<0.05) and accuracy (radiology 74.2% to 77.1%, others 64.4% to 72.8%, all p <0.05) improved in all readers.

CONCLUSION

While AI-CAD assistance helps improve the diagnostic performance of all inexperienced readers for thyroid nodules, self-learning was only effective for radiology residents with more background knowledge of ultrasonography.

CLINICAL IMPACT

Online self-learning, along with AI-CAD assistance, can effectively enhance the diagnostic performance of radiology residents in thyroid cancer.

摘要

背景

数据驱动的数字学习可以提高新手学生对甲状腺结节的诊断能力。

目的

评估数字自主学习和基于人工智能的计算机辅助诊断(AI-CAD)对缺乏经验的读者诊断甲状腺结节的效果。

方法

2023年2月至8月期间,来自6家医院的26名读者(各科室甲状腺超声经验少于1年)参与了本研究。读者完成了一个在线学习课程,该课程包含3000个独立标注为良性或恶性的甲状腺结节。要求他们在学习课程前后评估一个由120个具有已知手术病理结果的甲状腺结节组成的测试集。然后,他们参考AI-CAD并对甲状腺结节做出最终诊断。评估并比较了放射科住院医师和来自不同专业的读者在自我训练前后以及在AI-CAD辅助下的诊断性能。

结果

自我学习课程后AUC(受试者操作特征曲线下面积)有所提高,放射科医生参考AI-CAD后进一步提高(0.679对0.713对0.758,p<0.05)。虽然18名放射科住院医师在自我学习后AUC有所提高(0.7至0.743,p=0.016),准确性也有所提高(69.9%至74.2%,p=0.013),但其他科室的读者没有。在AI-CAD辅助下,所有读者的敏感性(放射科从70.3%提高到74.9%,其他科室从67.9%提高到82.3%,所有p<0.05)和准确性(放射科从74.2%提高到77.1%,其他科室从64.4%提高到72.8%,所有p<0.05)均有所提高。

结论

虽然AI-CAD辅助有助于提高所有缺乏经验的读者对甲状腺结节的诊断性能,但自我学习仅对具有更多超声背景知识的放射科住院医师有效。

临床意义

在线自我学习以及AI-CAD辅助可以有效提高放射科住院医师对甲状腺癌的诊断性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2282/11249553/b494028d3219/fendo-15-1372397-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验