Al-Turki Dhoyazan, Kyriakou Marios, Basurra Shadi, Gaber Mohamed Medhat, Abdelsamea Mohammed M
School of Computing and Digital Technology, Birmingham City University, Birmingham, B4 7BD, UK.
Department of Computer Science, Faculty of Computers and Information, Assiut University, Assiut, 71515, Egypt.
Sci Rep. 2023 Sep 27;13(1):16238. doi: 10.1038/s41598-023-42276-x.
Floorplan energy assessments present a highly efficient method for evaluating the energy efficiency of residential properties without requiring physical presence. By employing computer modelling, an accurate determination of the building's heat loss or gain can be achieved, enabling planners and homeowners to devise energy-efficient renovation or redevelopment plans. However, the creation of an AI model for floorplan element detection necessitates the manual annotation of a substantial collection of floorplans, which poses a daunting task. This paper introduces a novel active learning model designed to detect and annotate the primary elements within floorplan images, aiming to assist energy assessors in automating the analysis of such images-an inherently challenging problem due to the time-intensive nature of the annotation process. Our active learning approach initially trained on a set of 500 annotated images and progressively learned from a larger dataset comprising 4500 unlabelled images. This iterative process resulted in mean average precision score of 0.833, precision score of 0.972, and recall score of 0.950. We make our dataset publicly available under a Creative Commons license.
平面图能源评估提供了一种高效的方法,无需实地考察就能评估住宅物业的能源效率。通过使用计算机建模,可以准确确定建筑物的热损失或热增益,使规划者和房主能够制定节能改造或重新开发计划。然而,创建用于平面图元素检测的人工智能模型需要对大量平面图进行人工标注,这是一项艰巨的任务。本文介绍了一种新颖的主动学习模型,旨在检测和标注平面图图像中的主要元素,旨在帮助能源评估人员自动分析此类图像——由于标注过程耗时,这是一个固有挑战的问题。我们的主动学习方法最初在一组500张标注图像上进行训练,并从包含4500张未标注图像的更大数据集中逐步学习。这个迭代过程的平均精度得分为0.833,精确率得分为0.972,召回率得分为0.950。我们根据知识共享许可公开提供我们的数据集。