文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的视网膜 OCT 图像自动筛查中的小样本离群检测。

Few-shot out-of-distribution detection for automated screening in retinal OCT images using deep learning.

机构信息

Christian Doppler Laboratory for Artificial Intelligence in Retina, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria.

出版信息

Sci Rep. 2023 Sep 27;13(1):16231. doi: 10.1038/s41598-023-43018-9.


DOI:10.1038/s41598-023-43018-9
PMID:37758754
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10533534/
Abstract

Deep neural networks have been increasingly proposed for automated screening and diagnosis of retinal diseases from optical coherence tomography (OCT), but often provide high-confidence predictions on out-of-distribution (OOD) cases, compromising their clinical usage. With this in mind, we performed an in-depth comparative analysis of the state-of-the-art uncertainty estimation methods for OOD detection in retinal OCT imaging. The analysis was performed within the use-case of automated screening and staging of age-related macular degeneration (AMD), one of the leading causes of blindness worldwide, where we achieved a macro-average area under the curve (AUC) of 0.981 for AMD classification. We focus on a few-shot Outlier Exposure (OE) method and the detection of near-OOD cases that share pathomorphological characteristics with the inlier AMD classes. Scoring the OOD case based on the Cosine distance in the feature space from the penultimate network layer proved to be a robust approach for OOD detection, especially in combination with the OE. Using Cosine distance and only 8 outliers exposed per class, we were able to improve the near-OOD detection performance of the OE with Reject Bucket method by [Formula: see text] 10% compared to without OE, reaching an AUC of 0.937. The Cosine distance served as a robust metric for OOD detection of both known and unknown classes and should thus be considered as an alternative to the reject bucket class probability in OE approaches, especially in the few-shot scenario. The inclusion of these methodologies did not come at the expense of classification performance, and can substantially improve the reliability and trustworthiness of the resulting deep learning-based diagnostic systems in the context of retinal OCT.

摘要

深度神经网络已被越来越多地用于从光学相干断层扫描(OCT)中自动筛选和诊断视网膜疾病,但它们经常对离群(OOD)病例提供高度置信的预测,从而影响其临床应用。考虑到这一点,我们对用于视网膜 OCT 成像的 OOD 检测的最新不确定性估计方法进行了深入的比较分析。该分析是在自动筛选和分期年龄相关性黄斑变性(AMD)的用例中进行的,AMD 是全球导致失明的主要原因之一,我们在 AMD 分类方面实现了宏观平均曲线下面积(AUC)为 0.981。我们专注于少数样本外暴露(OE)方法和检测与内联 AMD 类具有相似病理形态特征的近 OOD 病例。基于倒数第二层网络层的特征空间中的余弦距离对 OOD 病例进行评分被证明是一种用于 OOD 检测的稳健方法,尤其是与 OE 结合使用时。使用余弦距离和每个类仅暴露 8 个异常值,我们能够将具有 Reject Bucket 方法的 OE 的近 OOD 检测性能提高 [Formula: see text] 与没有 OE 相比,提高了 10%,达到 AUC 为 0.937。余弦距离是用于检测已知和未知类别的稳健指标,因此应被视为 OE 方法中拒绝桶类概率的替代方法,尤其是在少数样本情况下。包含这些方法并不会影响分类性能,并且可以大大提高基于深度学习的诊断系统在视网膜 OCT 背景下的可靠性和可信度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6260/10533534/7646e1cbe804/41598_2023_43018_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6260/10533534/12222d869bea/41598_2023_43018_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6260/10533534/1c5bcdacac35/41598_2023_43018_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6260/10533534/2d5633ea0908/41598_2023_43018_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6260/10533534/7646e1cbe804/41598_2023_43018_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6260/10533534/12222d869bea/41598_2023_43018_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6260/10533534/1c5bcdacac35/41598_2023_43018_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6260/10533534/2d5633ea0908/41598_2023_43018_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6260/10533534/7646e1cbe804/41598_2023_43018_Fig4_HTML.jpg

相似文献

[1]
Few-shot out-of-distribution detection for automated screening in retinal OCT images using deep learning.

Sci Rep. 2023-9-27

[2]
Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography.

Comput Methods Programs Biomed. 2019-6-14

[3]
Fully automated detection of retinal disorders by image-based deep learning.

Graefes Arch Clin Exp Ophthalmol. 2019-3

[4]
The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment.

Med Biol Eng Comput. 2018-10-22

[5]
Multi-scale convolutional neural network for automated AMD classification using retinal OCT images.

Comput Biol Med. 2022-5

[6]
Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning.

Ophthalmology. 2017-12-8

[7]
Deep ensemble learning for automated non-advanced AMD classification using optimized retinal layer segmentation and SD-OCT scans.

Comput Biol Med. 2023-3

[8]
Automated detection and classification of early AMD biomarkers using deep learning.

Sci Rep. 2019-7-29

[9]
Attention-based deep learning system for automated diagnoses of age-related macular degeneration in optical coherence tomography images.

Med Phys. 2021-9

[10]
Uncertainty-aware multiple-instance learning for reliable classification: Application to optical coherence tomography.

Med Image Anal. 2024-10

引用本文的文献

[1]
ROQUS: a retinal OCT quality and usability score.

Biomed Opt Express. 2025-6-25

[2]
One-class support vector machines for detecting population drift in deployed machine learning medical diagnostics.

Sci Rep. 2025-4-9

[3]
Anomaly Detection in Retinal OCT Images With Deep Learning-Based Knowledge Distillation.

Transl Vis Sci Technol. 2025-3-3

[4]
Enhancing AI reliability: A foundation model with uncertainty estimation for optical coherence tomography-based retinal disease diagnosis.

Cell Rep Med. 2025-1-21

[5]
Automated deep learning-based AMD detection and staging in real-world OCT datasets (PINNACLE study report 5).

Sci Rep. 2023-11-9

本文引用的文献

[1]
Does your dermatology classifier know what it doesn't know? Detecting the long-tail of unseen conditions.

Med Image Anal. 2022-1

[2]
Automatic diagnosis of macular diseases from OCT volume based on its two-dimensional feature map and convolutional neural network with attention mechanism.

J Biomed Opt. 2020-9

[3]
Optical coherence tomography and color fundus photography in the screening of age-related macular degeneration: A comparative, population-based study.

PLoS One. 2020-8-14

[4]
DR|GRADUATE: Uncertainty-aware deep learning-based diabetic retinopathy grading in eye fundus images.

Med Image Anal. 2020-7

[5]
Classification of optical coherence tomography images using a capsule network.

BMC Ophthalmol. 2020-3-19

[6]
Exploring uncertainty measures in deep networks for Multiple sclerosis lesion detection and segmentation.

Med Image Anal. 2019-9-7

[7]
Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography.

Comput Methods Programs Biomed. 2019-6-14

[8]
Differentiation of Underlying Pathologies of Macular Edema Using Spectral Domain Optical Coherence Tomography (SD-OCT).

Ocul Immunol Inflamm. 2019

[9]
Exploiting Epistemic Uncertainty of Anatomy Segmentation for Anomaly Detection in Retinal OCT.

IEEE Trans Med Imaging. 2019-5-31

[10]
Attention to Lesion: Lesion-Aware Convolutional Neural Network for Retinal Optical Coherence Tomography Image Classification.

IEEE Trans Med Imaging. 2019-2-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索