Suppr超能文献

基于优化的视网膜层分割和 SD-OCT 扫描的自动非晚期 AMD 分类的深度集成学习。

Deep ensemble learning for automated non-advanced AMD classification using optimized retinal layer segmentation and SD-OCT scans.

机构信息

Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, United States.

Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, United States.

出版信息

Comput Biol Med. 2023 Mar;154:106512. doi: 10.1016/j.compbiomed.2022.106512. Epub 2023 Jan 10.

Abstract

BACKGROUND

Accurate retinal layer segmentation in optical coherence tomography (OCT) images is crucial for quantitatively analyzing age-related macular degeneration (AMD) and monitoring its progression. However, previous retinal segmentation models depend on experienced experts and manually annotating retinal layers is time-consuming. On the other hand, accuracy of AMD diagnosis is directly related to the segmentation model's performance. To address these issues, we aimed to improve AMD detection using optimized retinal layer segmentation and deep ensemble learning.

METHOD

We integrated a graph-cut algorithm with a cubic spline to automatically annotate 11 retinal boundaries. The refined images were fed into a deep ensemble mechanism that combined a Bagged Tree and end-to-end deep learning classifiers. We tested the developed deep ensemble model on internal and external datasets.

RESULTS

The total error rates for our segmentation model using the boundary refinement approach was significantly lower than OCT Explorer segmentations (1.7% vs. 7.8%, p-value = 0.03). We utilized the refinement approach to quantify 169 imaging features using Zeiss SD-OCT volume scans. The presence of drusen and thickness of total retina, neurosensory retina, and ellipsoid zone to inner-outer segment (EZ-ISOS) thickness had higher contributions to AMD classification compared to other features. The developed ensemble learning model obtained a higher diagnostic accuracy in a shorter time compared with two human graders. The area under the curve (AUC) for normal vs. early AMD was 99.4%.

CONCLUSION

Testing results showed that the developed framework is repeatable and effective as a potentially valuable tool in retinal imaging research.

摘要

背景

在光学相干断层扫描(OCT)图像中准确的视网膜层分割对于定量分析年龄相关性黄斑变性(AMD)和监测其进展至关重要。然而,以前的视网膜分割模型依赖于经验丰富的专家,手动标注视网膜层既耗时又费力。另一方面,AMD 诊断的准确性直接关系到分割模型的性能。为了解决这些问题,我们旨在通过优化的视网膜层分割和深度学习集成来提高 AMD 的检测能力。

方法

我们将图割算法与三次样条结合起来,自动标注 11 个视网膜边界。细化后的图像被输入到一个深度集成机制中,该机制结合了袋装树和端到端深度学习分类器。我们在内部和外部数据集上测试了开发的深度集成模型。

结果

我们的分割模型使用边界细化方法的总错误率明显低于 OCT Explorer 分割(1.7%比 7.8%,p 值=0.03)。我们利用细化方法使用蔡司 SD-OCT 容积扫描来量化 169 个成像特征。与其他特征相比,存在玻璃膜疣和总视网膜、神经感觉视网膜以及椭圆体带至内-外节(EZ-ISOS)厚度的厚度对 AMD 分类的贡献更高。与两名人类分级员相比,开发的集成学习模型在更短的时间内获得了更高的诊断准确性。正常与早期 AMD 的曲线下面积(AUC)为 99.4%。

结论

测试结果表明,所开发的框架作为视网膜成像研究中的一种潜在有价值的工具,具有可重复性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验