Suppr超能文献

利用光谱特征识别医疗保健相关感染(HAI)患者以进行临床接触预防。

Using spectral characterization to identify healthcare-associated infection (HAI) patients for clinical contact precaution.

机构信息

College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, USA.

Biocomplexity Institute, University of Virginia, Charlottesville, VA, 22904, USA.

出版信息

Sci Rep. 2023 Sep 27;13(1):16197. doi: 10.1038/s41598-023-41852-5.

Abstract

Healthcare-associated infections (HAIs) are a major problem in hospital infection control. Although HAIs can be suppressed using contact precautions, such precautions are expensive, and we can only apply them to a small fraction of patients (i.e., a limited budget). In this work, we focus on two clinical problems arising from the limited budget: (a) choosing the best patients to be placed under precaution given a limited budget to minimize the spread (the isolation problem), and (b) choosing the best patients to release when limited budget requires some of the patients to be cleared from precaution (the clearance problem). A critical challenge in addressing them is that HAIs have multiple transmission pathways such that locations can also accumulate 'load' and spread the disease. One of the most common practices when placing patients under contact precautions is the regular clearance of pathogen loads. However, standard propagation models like independent cascade (IC)/susceptible-infectious-susceptible (SIS) cannot capture such mechanisms directly. Hence to account for this challenge, using non-linear system theory, we develop a novel spectral characterization of a recently proposed pathogen load based model, 2-MODE-SIS model, on people/location networks to capture spread dynamics of HAIs. We formulate the two clinical problems using this spectral characterization and develop effective and efficient algorithms for them. Our experiments show that our methods outperform several natural structural and clinical approaches on real-world hospital testbeds and pick meaningful solutions.

摘要

医疗机构相关感染(HAI)是医院感染控制中的一个主要问题。尽管可以使用接触预防措施来抑制 HAI,但这些预防措施成本高昂,我们只能将其应用于一小部分患者(即预算有限)。在这项工作中,我们专注于预算有限时出现的两个临床问题:(a)在预算有限的情况下,选择最佳的患者进行预防措施,以最大程度地减少传播(隔离问题);(b)当预算有限需要清除部分患者的预防措施时,选择最佳的患者进行清除(清除问题)。解决这些问题的一个关键挑战是,HAI 有多种传播途径,因此地点也可能积累“负荷”并传播疾病。在对患者进行接触预防措施时,最常见的做法之一是定期清除病原体负荷。然而,像独立级联(IC)/易感染-感染-易感染(SIS)这样的标准传播模型无法直接捕捉到这些机制。因此,为了应对这一挑战,我们使用非线性系统理论,对最近提出的基于病原体负荷的模型 2-MODE-SIS 模型在人员/地点网络上进行了新颖的谱特征描述,以捕获 HAI 的传播动态。我们使用这种谱特征来制定这两个临床问题,并为它们开发了有效和高效的算法。我们的实验表明,我们的方法在真实医院测试平台上优于几种自然结构和临床方法,并选择了有意义的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe9d/10533902/c436a8f30765/41598_2023_41852_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验