Centro de Tecnologías de la Imagen, Departamento de Informática y Sistemas, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain;
Centre Borelli, Université Paris-Saclay, École Normale Supérieure Paris-Saclay, CNRS, F-91190 Gif-sur-Yvette, France.
Proc Natl Acad Sci U S A. 2021 Dec 14;118(50). doi: 10.1073/pnas.2105112118.
The COVID-19 pandemic has undergone frequent and rapid changes in its local and global infection rates, driven by governmental measures or the emergence of new viral variants. The reproduction number indicates the average number of cases generated by an infected person at time and is a key indicator of the spread of an epidemic. A timely estimation of is a crucial tool to enable governmental organizations to adapt quickly to these changes and assess the consequences of their policies. The EpiEstim method is the most widely accepted method for estimating But it estimates with a significant temporal delay. Here, we propose a method, EpiInvert, that shows good agreement with EpiEstim, but that provides estimates of several days in advance. We show that can be estimated by inverting the renewal equation linking with the observed incidence curve of new cases, Our signal-processing approach to this problem yields both and a restored corrected for the "weekend effect" by applying a deconvolution and denoising procedure. The implementations of the EpiInvert and EpiEstim methods are fully open source and can be run in real time on every country in the world and every US state.
新冠疫情在本地和全球的感染率方面经历了频繁而快速的变化,这些变化是由政府措施或新病毒变种的出现所驱动的。繁殖数 表示在时间 时,一个感染者产生的平均病例数,是传染病传播的关键指标。及时估计 是政府组织快速适应这些变化并评估其政策后果的重要工具。EpiEstim 方法是估计 的最广泛接受的方法。但它存在着显著的时间延迟。在这里,我们提出了一种方法,EpiInvert,它与 EpiEstim 具有很好的一致性,但可以提前几天提供估计值。我们表明,可以通过反转将 与新发病例的观测发病率曲线联系起来的更新方程来估计 。我们对这个问题的信号处理方法既提供了 ,又通过应用去卷积和降噪过程来纠正了“周末效应”,得到了校正后的 。EpiInvert 和 EpiEstim 方法的实现完全开源,可以在世界上的每个国家和美国的每个州实时运行。