Department of Physics and Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany.
OIST Graduate University, Onna, Japan.
Nature. 2023 Sep;621(7980):723-727. doi: 10.1038/s41586-023-06469-8. Epub 2023 Sep 27.
Heat engines convert thermal energy into mechanical work both in the classical and quantum regimes. However, quantum theory offers genuine non-classical forms of energy, different from heat, which so far have not been exploited in cyclic engines. Here we experimentally realize a quantum many-body engine fuelled by the energy difference between fermionic and bosonic ensembles of ultracold particles that follows from the Pauli exclusion principle. We employ a harmonically trapped superfluid gas of Li atoms close to a magnetic Feshbach resonance that allows us to effectively change the quantum statistics from Bose-Einstein to Fermi-Dirac, by tuning the gas between a Bose-Einstein condensate of bosonic molecules and a unitary Fermi gas (and back) through a magnetic field. The quantum nature of such a Pauli engine is revealed by contrasting it with an engine in the classical thermal regime and with a purely interaction-driven device. We obtain a work output of several 10 vibrational quanta per cycle with an efficiency of up to 25%. Our findings establish quantum statistics as a useful thermodynamic resource for work production.
热机在经典和量子范围内将热能转化为机械功。然而,量子理论提供了真正的非经典形式的能量,与热不同,这些能量迄今为止尚未在循环发动机中得到利用。在这里,我们通过实验实现了一种由费米子和玻色子超冷粒子系综之间的能量差驱动的量子多体发动机,这种能量差源于泡利不相容原理。我们使用接近磁费什巴赫共振的谐波囚禁超流气体的锂原子,通过在磁场中将气体从玻色-爱因斯坦凝聚态的玻色分子调谐到幺正费米气体(和反向),从而有效地将量子统计从玻色-爱因斯坦变为费米-狄拉克。这种保罗发动机的量子性质通过将其与经典热发动机和纯相互作用驱动的装置进行对比来揭示。我们每循环获得了几个 10 个振动量子的功输出,效率高达 25%。我们的发现确立了量子统计作为产生功的有用热力学资源。