Bouton Quentin, Nettersheim Jens, Burgardt Sabrina, Adam Daniel, Lutz Eric, Widera Artur
Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern, Germany.
Institute for Theoretical Physics I, University of Stuttgart, Stuttgart, Germany.
Nat Commun. 2021 Apr 6;12(1):2063. doi: 10.1038/s41467-021-22222-z.
Quantum heat engines are subjected to quantum fluctuations related to their discrete energy spectra. Such fluctuations question the reliable operation of thermal machines in the quantum regime. Here, we realize an endoreversible quantum Otto cycle in the large quasi-spin states of Cesium impurities immersed in an ultracold Rubidium bath. Endoreversible machines are internally reversible and irreversible losses only occur via thermal contact. We employ quantum control to regulate the direction of heat transfer that occurs via inelastic spin-exchange collisions. We further use full-counting statistics of individual atoms to monitor quantized heat exchange between engine and bath at the level of single quanta, and additionally evaluate average and variance of the power output. We optimize the performance as well as the stability of the quantum heat engine, achieving high efficiency, large power output and small power output fluctuations.
量子热机受到与其离散能谱相关的量子涨落影响。这种涨落对量子 regime 中热机的可靠运行提出了质疑。在这里,我们在浸没于超冷铷浴中的铯杂质的大准自旋态中实现了一个内可逆量子奥托循环。内可逆机器在内部是可逆的,不可逆损失仅通过热接触发生。我们采用量子控制来调节通过非弹性自旋交换碰撞发生的热传递方向。我们还使用单个原子的全计数统计来监测发动机与浴之间在单个量子水平上的量子化热交换,并额外评估功率输出的平均值和方差。我们优化了量子热机的性能以及稳定性,实现了高效率、大功率输出和小功率输出涨落。