Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-Cho, Inage-ku, Chiba, 263-8522, Japan.
Department of Medical Engineering, Faculty of Engineering, Chiba University, 1-33 Yayoi-Cho, Inage-ku, Chiba, 263-8522, Japan.
Sci Rep. 2023 Sep 27;13(1):16214. doi: 10.1038/s41598-023-43503-1.
Lower extremity lymphedema (LEL) is a common complication after gynecological cancer treatment, which significantly reduces the quality of life. While early diagnosis and intervention can prevent severe complications, there is currently no consensus on the optimal screening strategy for postoperative LEL. In this study, we developed a computer-aided diagnosis (CAD) software for LEL screening in pelvic computed tomography (CT) images using deep learning. A total of 431 pelvic CT scans from 154 gynecological cancer patients were used for this study. We employed ResNet-18, ResNet-34, and ResNet-50 models as the convolutional neural network (CNN) architecture. The input image for the CNN model used a single CT image at the greater trochanter level. Fat-enhanced images were created and used as input to improve classification performance. Receiver operating characteristic analysis was used to evaluate our method. The ResNet-34 model with fat-enhanced images achieved the highest area under the curve of 0.967 and an accuracy of 92.9%. Our CAD software enables LEL diagnosis from a single CT image, demonstrating the feasibility of LEL screening only on CT images after gynecologic cancer treatment. To increase the usefulness of our CAD software, we plan to validate it using external datasets.
下肢淋巴水肿(LEL)是妇科癌症治疗后的常见并发症,显著降低了生活质量。虽然早期诊断和干预可以预防严重的并发症,但目前对于术后 LEL 的最佳筛查策略尚无共识。在这项研究中,我们使用深度学习开发了一种用于盆腔计算机断层扫描(CT)图像中 LEL 筛查的计算机辅助诊断(CAD)软件。这项研究共使用了 154 名妇科癌症患者的 431 个盆腔 CT 扫描。我们采用了 ResNet-18、ResNet-34 和 ResNet-50 模型作为卷积神经网络(CNN)架构。CNN 模型的输入图像为股骨大转子水平的单个 CT 图像。创建了脂肪增强图像并将其用作输入,以提高分类性能。我们使用接收者操作特征分析来评估我们的方法。使用脂肪增强图像的 ResNet-34 模型获得了最高的曲线下面积 0.967 和 92.9%的准确率。我们的 CAD 软件能够从单个 CT 图像进行 LEL 诊断,证明了仅在妇科癌症治疗后的 CT 图像上进行 LEL 筛查是可行的。为了提高我们 CAD 软件的实用性,我们计划使用外部数据集对其进行验证。