文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

液泡膜的物理化学性质和细胞因子决定了液泡内陷的形成。

Physicochemical properties of the vacuolar membrane and cellular factors determine formation of vacuolar invaginations.

机构信息

Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.

Department of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan.

出版信息

Sci Rep. 2023 Sep 27;13(1):16187. doi: 10.1038/s41598-023-43232-5.


DOI:10.1038/s41598-023-43232-5
PMID:37759072
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10533490/
Abstract

Vacuoles change their morphology in response to stress. In yeast exposed to chronically high temperatures, vacuolar membranes get deformed and invaginations are formed. We show that phase-separation of vacuolar membrane occurred after heat stress leading to the formation of the invagination. In addition, Hfl1, a vacuolar membrane-localized Atg8-binding protein, was found to suppress the excess vacuolar invaginations after heat stress. At that time, Hfl1 formed foci at the neck of the invaginations in wild-type cells, whereas it was efficiently degraded in the vacuole in the atg8Δ mutant. Genetic analysis showed that the endosomal sorting complex required for transport machinery was necessary to form the invaginations irrespective of Atg8 or Hfl1. In contrast, a combined mutation with the vacuole BAR domain protein Ivy1 led to vacuoles in hfl1Δivy1Δ and atg8Δivy1Δ mutants having constitutively invaginated structures; moreover, these mutants showed stress-sensitive phenotypes. Our findings suggest that vacuolar invaginations result from the combination of changes in the physiochemical properties of the vacuolar membrane and other cellular factors.

摘要

液泡会根据压力改变形态。在长期处于高温环境的酵母中,液泡膜会变形并出现内陷。我们发现,热应激后液泡膜发生了相分离,导致了内陷的形成。此外,我们还发现,定位于液泡膜的 Atg8 结合蛋白 Hfl1 可以抑制热应激后液泡的过度内陷。在野生型细胞中,Hfl1 在内陷的颈部形成焦点,而在 atg8Δ 突变体中,Hfl1 则被有效地降解在液泡中。遗传分析表明,内体分选复合物所需的运输机制对于形成内陷是必要的,而与 Atg8 或 Hfl1 无关。相比之下,与液泡 BAR 结构域蛋白 Ivy1 的联合突变导致 hfl1Δivy1Δ 和 atg8Δivy1Δ 突变体中的液泡具有持续内陷的结构;此外,这些突变体还表现出应激敏感的表型。我们的研究结果表明,液泡内陷是由液泡膜物理化学性质的变化和其他细胞因素共同作用的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e9/10533490/45c7eba5458a/41598_2023_43232_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e9/10533490/226fc88270a6/41598_2023_43232_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e9/10533490/bdcd79960b19/41598_2023_43232_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e9/10533490/a699f911214f/41598_2023_43232_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e9/10533490/068b0e0e4391/41598_2023_43232_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e9/10533490/9fd6db1ccf08/41598_2023_43232_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e9/10533490/aba32948fd08/41598_2023_43232_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e9/10533490/c8e93dde2b94/41598_2023_43232_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e9/10533490/45c7eba5458a/41598_2023_43232_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e9/10533490/226fc88270a6/41598_2023_43232_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e9/10533490/bdcd79960b19/41598_2023_43232_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e9/10533490/a699f911214f/41598_2023_43232_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e9/10533490/068b0e0e4391/41598_2023_43232_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e9/10533490/9fd6db1ccf08/41598_2023_43232_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e9/10533490/aba32948fd08/41598_2023_43232_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e9/10533490/c8e93dde2b94/41598_2023_43232_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e9/10533490/45c7eba5458a/41598_2023_43232_Fig8_HTML.jpg

相似文献

[1]
Physicochemical properties of the vacuolar membrane and cellular factors determine formation of vacuolar invaginations.

Sci Rep. 2023-9-27

[2]
Role of Atg8 in the regulation of vacuolar membrane invagination.

Sci Rep. 2019-10-15

[3]
Accelerated invagination of vacuoles as a stress response in chronically heat-stressed yeasts.

Sci Rep. 2018-2-8

[4]
Membrane recruitment of Atg8 by Hfl1 facilitates turnover of vacuolar membrane proteins in yeast cells approaching stationary phase.

BMC Biol. 2021-6-4

[5]
Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting.

J Cell Biol. 1988-10

[6]
Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with a vacuole membrane protein.

Elife. 2018-11-19

[7]
Prevacuolar compartment morphology in vps mutants of Saccharomyces cerevisiae.

Cell Biol Int. 2007-10

[8]
A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast.

J Cell Biol. 1995-3

[9]
Cell-free reconstitution of microautophagic vacuole invagination and vesicle formation.

J Cell Biol. 2000-10-30

[10]
Ivy1 is a negative regulator of Gtr-dependent TORC1 activation.

J Cell Sci. 2018-9-7

本文引用的文献

[1]
Yeast cells actively tune their membranes to phase separate at temperatures that scale with growth temperatures.

Proc Natl Acad Sci U S A. 2022-1-25

[2]
Roles for L microdomains and ESCRT in ER stress-induced lipid droplet microautophagy in budding yeast.

Mol Biol Cell. 2021-12-1

[3]
Membrane recruitment of Atg8 by Hfl1 facilitates turnover of vacuolar membrane proteins in yeast cells approaching stationary phase.

BMC Biol. 2021-6-4

[4]
The ATG conjugation systems in autophagy.

Curr Opin Cell Biol. 2019-12-31

[5]
TORC1 regulates ESCRT-0 complex formation on the vacuolar membrane and microautophagy induction in yeast.

Biochem Biophys Res Commun. 2019-11-15

[6]
Role of Atg8 in the regulation of vacuolar membrane invagination.

Sci Rep. 2019-10-15

[7]
Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with a vacuole membrane protein.

Elife. 2018-11-19

[8]
Lipids and lipid domains of the yeast vacuole.

Biochem Soc Trans. 2018-9-20

[9]
Accelerated invagination of vacuoles as a stress response in chronically heat-stressed yeasts.

Sci Rep. 2018-2-8

[10]
Hallmarks of Reversible Separation of Living, Unperturbed Cell Membranes into Two Liquid Phases.

Biophys J. 2017-12-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索