文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

L 微区和 ESCRT 在出芽酵母内质网应激诱导的脂滴微自噬中的作用。

Roles for L microdomains and ESCRT in ER stress-induced lipid droplet microautophagy in budding yeast.

机构信息

Department of Pathology and Cell Biology, Columbia University, New York, NY 10032.

出版信息

Mol Biol Cell. 2021 Dec 1;32(22):br12. doi: 10.1091/mbc.E21-04-0179. Epub 2021 Oct 20.


DOI:10.1091/mbc.E21-04-0179
PMID:34668753
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8694086/
Abstract

Microlipophagy (µLP), degradation of lipid droplets (LDs) by microautophagy, occurs by autophagosome-independent direct uptake of LDs at lysosomes/vacuoles in response to nutrient limitations and ER stressors in . In nutrient-limited yeast, liquid-ordered (L) microdomains, sterol-rich raftlike regions in vacuolar membranes, are sites of membrane invagination during LD uptake. The endosome sorting complex required for transport (ESCRT) is required for sterol transport during L formation under these conditions. However, ESCRT has been implicated in mediating membrane invagination during µLP induced by ER stressors or the diauxic shift from glycolysis- to respiration-driven growth. Here we report that ER stress induced by lipid imbalance and other stressors induces L microdomain formation. This process is ESCRT independent and dependent on Niemann-Pick type C sterol transfer proteins. Inhibition of ESCRT or L microdomain formation partially inhibits lipid imbalance-induced µLP, while inhibition of both blocks this µLP. Finally, although the ER stressors dithiothreitol or tunicamycin induce L microdomains, µLP in response to these stressors is ESCRT dependent and L microdomain independent. Our findings reveal that L microdomain formation is a yeast stress response, and stress-induced L microdomain formation occurs by stressor-specific mechanisms. Moreover, ESCRT and L microdomains play functionally distinct roles in LD uptake during stress-induced µLP.

摘要

微脂噬作用(µLP),即溶酶体/液泡通过微自噬作用降解脂滴(LDs),发生在营养限制和内质网应激时,通过自噬体独立的直接摄取 LDs。在营养限制的酵母中,液有序(L)微区是液泡膜中富含固醇的筏状区域,是 LD 摄取时膜内陷的部位。在这些条件下,形成 L 时需要内体分选复合物(ESCRT)来运输固醇。然而,ESCRT 已被牵连到 ER 应激或糖酵解到呼吸驱动生长的双相转变诱导的 µLP 中的膜内陷的过程中。在这里,我们报告脂质失衡和其他应激源诱导的 ER 应激诱导 L 微区形成。这个过程与 ESCRT 无关,而是依赖于尼曼-匹克 C 型固醇转移蛋白。ESCRT 或 L 微区形成的抑制部分抑制了由脂质失衡诱导的 µLP,而两者的抑制都阻止了这种 µLP。最后,尽管 ER 应激源二硫苏糖醇或衣霉素诱导 L 微区形成,但这些应激源诱导的 µLP 依赖于 ESCRT 且与 L 微区无关。我们的发现揭示了 L 微区形成是酵母应激反应的一种,应激诱导的 L 微区形成通过应激特异性机制发生。此外,在应激诱导的 µLP 期间,ESCRT 和 L 微区在 LD 摄取中发挥功能不同的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/155f/8694086/cb507fea5973/mbc-32-br12-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/155f/8694086/b6e73b09db6c/mbc-32-br12-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/155f/8694086/7cc957efbbbe/mbc-32-br12-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/155f/8694086/88855f784288/mbc-32-br12-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/155f/8694086/b4f801ae2235/mbc-32-br12-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/155f/8694086/cb507fea5973/mbc-32-br12-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/155f/8694086/b6e73b09db6c/mbc-32-br12-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/155f/8694086/7cc957efbbbe/mbc-32-br12-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/155f/8694086/88855f784288/mbc-32-br12-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/155f/8694086/b4f801ae2235/mbc-32-br12-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/155f/8694086/cb507fea5973/mbc-32-br12-g005.jpg

相似文献

[1]
Roles for L microdomains and ESCRT in ER stress-induced lipid droplet microautophagy in budding yeast.

Mol Biol Cell. 2021-12-1

[2]
Membrane dynamics and protein targets of lipid droplet microautophagy during ER stress-induced proteostasis in the budding yeast, .

Autophagy. 2021-9

[3]
Lipid droplets in stress protection: distinct mechanisms of lipid droplet microautophagy.

Autophagy Rep. 2022

[4]
ESCRT machinery plays a role in microautophagy in yeast.

BMC Mol Cell Biol. 2020-10-7

[5]
Role for Lipid Droplet Biogenesis and Microlipophagy in Adaptation to Lipid Imbalance in Yeast.

Dev Cell. 2015-12-7

[6]
TORC1 regulates ESCRT-0 complex formation on the vacuolar membrane and microautophagy induction in yeast.

Biochem Biophys Res Commun. 2019-11-15

[7]
The PI3 Kinase Complex II-PI3P-Vps27 Axis on Vacuolar Membranes is Critical for Microautophagy Induction and Nutrient Stress Adaptation.

J Mol Biol. 2022-1-30

[8]
Lipid Droplets and Their Autophagic Turnover via the Raft-Like Vacuolar Microdomains.

Int J Mol Sci. 2021-7-29

[9]
PP2A promotes ESCRT-0 complex formation on vacuolar membranes and microautophagy induction after TORC1 inactivation.

Biochem Biophys Res Commun. 2020-2-4

[10]
Stationary phase lipophagy as a cellular mechanism to recycle sterols during quiescence.

Autophagy. 2014

引用本文的文献

[1]
Orchestration of SARS-CoV-2 Nsp4 and host cell ESCRT proteins induces morphological changes of the endoplasmic reticulum.

Mol Biol Cell. 2025-4-1

[2]
Microlipophagy from Simple to Complex Eukaryotes.

Cells. 2025-1-18

[3]
The Vacuole Lipid Droplet Contact Site vCLIP.

Contact (Thousand Oaks). 2024-12-22

[4]
General autophagy-dependent and -independent lipophagic processes collaborate to regulate the overall level of lipophagy in yeast.

Autophagy. 2024-7

[5]
Automated quantification of vacuole fusion and lipophagy in from fluorescence and cryo-soft X-ray microscopy data using deep learning.

Autophagy. 2024-4

[6]
Lipid droplets in stress protection: distinct mechanisms of lipid droplet microautophagy.

Autophagy Rep. 2022

[7]
Physicochemical properties of the vacuolar membrane and cellular factors determine formation of vacuolar invaginations.

Sci Rep. 2023-9-27

[8]
Membrane homeostasis beyond fluidity: control of membrane compressibility.

Trends Biochem Sci. 2023-11

[9]
The regulatory role of lipophagy in central nervous system diseases.

Cell Death Discov. 2023-7-6

[10]
Fatty Acyl Coenzyme A Synthetase Fat1p Regulates Vacuolar Structure and Stationary-Phase Lipophagy in Saccharomyces cerevisiae.

Microbiol Spectr. 2023-2-14

本文引用的文献

[1]
Direct lysosome-based autophagy of lipid droplets in hepatocytes.

Proc Natl Acad Sci U S A. 2020-12-22

[2]
Membrane dynamics and protein targets of lipid droplet microautophagy during ER stress-induced proteostasis in the budding yeast, .

Autophagy. 2021-9

[3]
The endosomal sorting complex required for transport complex negatively regulates Erg6 degradation under specific glucose restriction conditions.

Traffic. 2020-7

[4]
Emerging Roles of Lipophagy in Health and Disease.

Front Cell Dev Biol. 2019-9-10

[5]
Dynamics and functions of lipid droplets.

Nat Rev Mol Cell Biol. 2019-3

[6]
Lipids and lipid domains of the yeast vacuole.

Biochem Soc Trans. 2018-9-20

[7]
Lipid droplet autophagy during energy mobilization, lipid homeostasis and protein quality control.

Front Biosci (Landmark Ed). 2018-3-1

[8]
Evidence for ESCRT- and clathrin-dependent microautophagy.

J Cell Biol. 2017-10-2

[9]
Lipid droplet functions beyond energy storage.

Biochim Biophys Acta Mol Cell Biol Lipids. 2017-7-19

[10]
Niemann-Pick type C proteins promote microautophagy by expanding raft-like membrane domains in the yeast vacuole.

Elife. 2017-6-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索