Suppr超能文献

基于小波变换的功能脑网络频率自适应模型。

Wavelet transform-based frequency self-adaptive model for functional brain network.

机构信息

School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing, Nan'An 400064, China.

Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.

出版信息

Cereb Cortex. 2023 Nov 4;33(22):11181-11194. doi: 10.1093/cercor/bhad357.

Abstract

The accurate estimation of functional brain networks is essential for comprehending the intricate relationships between different brain regions. Conventional methods such as Pearson Correlation and Sparse Representation often fail to uncover concealed information within diverse frequency bands. To address this limitation, we introduce a novel frequency-adaptive model based on wavelet transform, enabling selective capture of highly correlated frequency band sequences. Our approach involves decomposing the original time-domain signal from resting-state functional magnetic resonance imaging into distinct frequency domains, thus constructing an adjacency matrix that offers enhanced separation of features across brain regions. Comparative analysis demonstrates the superior performance of our proposed model over conventional techniques, showcasing improved clarity and distinctiveness. Notably, we achieved the highest accuracy rate of 89.01% using Sparse Representation based on Wavelet Transform, outperforming Pearson Correlation based on Wavelet Transform with an accuracy of 81.32%. Importantly, our method optimizes raw data without significantly altering feature topology, rendering it adaptable to various functional brain network estimation approaches. Overall, this innovation holds the potential to advance the understanding of brain function and furnish more accurate samples for future research and clinical applications.

摘要

准确估计功能脑网络对于理解不同脑区之间复杂的关系至关重要。传统方法,如 Pearson 相关系数和稀疏表示,往往无法揭示不同频带内隐藏的信息。为了解决这个局限性,我们引入了一种基于小波变换的新型频率自适应模型,能够选择性地捕获高度相关的频带序列。我们的方法涉及将静息态功能磁共振成像的原始时域信号分解为不同的频域,从而构建一个邻接矩阵,增强了脑区之间特征的分离。比较分析表明,我们提出的模型优于传统技术,显示出更高的清晰度和独特性。值得注意的是,我们使用基于小波变换的稀疏表示实现了最高的 89.01%准确率,优于准确率为 81.32%的基于小波变换的 Pearson 相关系数。重要的是,我们的方法优化原始数据而不会显著改变特征拓扑,使其适应各种功能脑网络估计方法。总的来说,这项创新有可能推进对大脑功能的理解,并为未来的研究和临床应用提供更准确的样本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验