Suppr超能文献

基于关联保持嵌入的高阶脑功能网络估计。

Estimating high-order brain functional networks by correlation-preserving embedding.

机构信息

School of Mathematics Science, Liaocheng University, Liaocheng, 252000, China.

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

出版信息

Med Biol Eng Comput. 2022 Oct;60(10):2813-2823. doi: 10.1007/s11517-022-02628-7. Epub 2022 Jul 22.

Abstract

Brain functional network (FN) has emerged as a potential tool for identifying mental and neurological diseases. Traditional FN estimation methods such as Pearson's correlation (PC) and sparse representation (SR), despite their popularity, can only model low-order relationships between brain regions (i.e., nodes of FN), thus failing to capture more complex interaction in the brain. Recently, researchers proposed to estimate high-order FN (HoFN) and successfully used them in the early diagnosis of neurological diseases. In practice, however, such HoFN is constructed by directly considering the columns (or rows) of the adjacency matrix of low-order FN (LoFN) as node feature vectors that may contain some redundant or noisy information. In addition, it is not really reflected whether the original low-order relationship is maintained during the construction of the HoFN. To address these problems, we propose correlation-preserving embedding (COPE) to re-code the LoFN prior to constructing HoFN. Specifically, we first use SR to construct traditional LoFN. Then, we embed the LoFN via COPE to generate the new node representation for removing the potentially redundant/noisy information in original node feature vectors and simultaneously maintaining the low-order relationship between brain regions. Finally, the expected HoFN is estimated by SR based on the new node representation. To verify the effectiveness of the proposed scheme, we conduct experiments on 137 subjects from the public Alzheimer's Disease Neuroimaging Initiative (ADNI) database to identify subjects with mild cognitive impairment (MCI) from normal controls. Experimental results show that the proposed scheme can achieve better performance than the baseline method. Brain functional network (FN) has emerged as a potential tool for identifying mental and neurological diseases. Traditional FN estimation methods such as Pearson's correlation (PC) and sparse representation (SR), despite their popularity, can only model low-order relationships between brain regions (i.e., nodes of FN), thus failing to capture more complex interaction in the brain. Recently, researchers proposed to estimate high-order FN (HoFN) and successfully used them in the early diagnosis of neurological diseases. In practice, however, such HoFN is constructed by directly considering the columns (or rows) of the adjacency matrix of low-order FN (LoFN) as node feature vectors that may contain some redundant or noisy information. In addition, it is not really reflected whether the original low-order relationship is maintained during the construction of the HoFN. To address these problems, we propose correlation-preserving embedding (COPE) to re-code the LoFN prior to constructing HoFN. Specifically, we first use SR to construct traditional LoFN. Then, we embed the LoFN via COPE to generate the new node representation for removing the potentially redundant/noisy information in original node feature vectors and simultaneously maintaining the low-order relationship between brain regions. Finally, the expected HoFN is estimated by SR based on the new node representation. To verify the effectiveness of the proposed scheme, we conduct experiments on 137 subjects from the public Alzheimer's Disease Neuroimaging Initiative (ADNI) database to identify subjects with mild cognitive impairment (MCI) from normal controls. Experimental results show that the proposed scheme can achieve better performance than the baseline method.

摘要

脑功能网络 (FN) 已成为识别精神和神经疾病的潜在工具。尽管 Pearson 相关系数 (PC) 和稀疏表示 (SR) 等传统 FN 估计方法很受欢迎,但它们只能对脑区之间的低阶关系 (即 FN 的节点) 进行建模,因此无法捕捉大脑中更复杂的相互作用。最近,研究人员提出了估计高阶 FN (HoFN) 的方法,并成功地将其用于神经疾病的早期诊断。然而,在实践中,这种 HoFN 是通过直接考虑低阶 FN (LoFN) 的邻接矩阵的列 (或行) 作为节点特征向量来构建的,这可能包含一些冗余或噪声信息。此外,在构建 HoFN 时,并没有真正反映出原始低阶关系是否得到保持。为了解决这些问题,我们提出了相关保持嵌入 (COPE),在构建 HoFN 之前对 LoFN 进行重新编码。具体来说,我们首先使用 SR 构建传统的 LoFN。然后,我们通过 COPE 对 LoFN 进行嵌入,生成新的节点表示,以去除原始节点特征向量中潜在的冗余/噪声信息,同时保持脑区之间的低阶关系。最后,基于新的节点表示,通过 SR 估计预期的 HoFN。为了验证所提出方案的有效性,我们在来自公共阿尔茨海默病神经影像学倡议 (ADNI) 数据库的 137 名受试者上进行了实验,以从正常对照中识别出轻度认知障碍 (MCI) 受试者。实验结果表明,所提出的方案比基线方法具有更好的性能。脑功能网络 (FN) 已成为识别精神和神经疾病的潜在工具。尽管 Pearson 相关系数 (PC) 和稀疏表示 (SR) 等传统 FN 估计方法很受欢迎,但它们只能对脑区之间的低阶关系 (即 FN 的节点) 进行建模,因此无法捕捉大脑中更复杂的相互作用。最近,研究人员提出了估计高阶 FN (HoFN) 的方法,并成功地将其用于神经疾病的早期诊断。然而,在实践中,这种 HoFN 是通过直接考虑低阶 FN (LoFN) 的邻接矩阵的列 (或行) 作为节点特征向量来构建的,这可能包含一些冗余或噪声信息。此外,在构建 HoFN 时,并没有真正反映出原始低阶关系是否得到保持。为了解决这些问题,我们提出了相关保持嵌入 (COPE),在构建 HoFN 之前对 LoFN 进行重新编码。具体来说,我们首先使用 SR 构建传统的 LoFN。然后,我们通过 COPE 对 LoFN 进行嵌入,生成新的节点表示,以去除原始节点特征向量中潜在的冗余/噪声信息,同时保持脑区之间的低阶关系。最后,基于新的节点表示,通过 SR 估计预期的 HoFN。为了验证所提出方案的有效性,我们在来自公共阿尔茨海默病神经影像学倡议 (ADNI) 数据库的 137 名受试者上进行了实验,以从正常对照中识别出轻度认知障碍 (MCI) 受试者。实验结果表明,所提出的方案比基线方法具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验